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Since 2000, the biennial ERAD (European conference on RADar in meteorology and hydrology) conference
is an awaited occasion, within the radar community, to connect academia, industry, and weather services, in
an international and dynamic environment, fostering collaboration among scientists, engineers, and
operational stakeholders. This journey keeps going thanks to the dedicated effort and collaboration of the
international weather radar community.

The Institute of Atmospheric Sciences and Climate of Italian National Research Council (CNR-ISAC) and
the Sapienza University of Rome had the honour to host the 12th edition in Rome, Italy.

Each ERAD conference, while sharing common goals, offers something unique that reflects the
characteristics of its host venue and organizers. In Rome, we had the privilege of holding the conference on
the vibrant main campus of Italy’s largest university, Sapienza University of Rome, which provided ERAD
2024 with access to the monumental Aula Magna auditorium and the fascinating Museum of Classical Art.

Continuing the tradition of ERAD conferences, students and early-stage researchers had the opportunity to
attend the event and trainings, present their studies, and most importantly, network within a diverse
community that fosters knowledge in the areas of scientific and technological research related to radar in
meteorology and other environmental applications. Some of them received support for their participation,
and poster competitions and oral presentations were organized to stimulate quality research.

Finally, ERAD 2024 also provided a valuable platform for scientists and weather services to interact with
manufacturers to stay informed about the latest product offerings related to weather radar.

As many other conferences, after the experience of COVID 19 pandemic, ERAD 2024 offered the flexibility
of attendance, allowing participants to be physically present at the Sapienza venue or to join remotely.

At the conference, seven keynotes were presented, including one by the winner of the Gutta Aurea award,
dedicated to the late Prof. Frank S. Marzano. A total of 154 oral presentations and 217 poster presentations
were delivered in sessions organized according to the following topics:

— Clouds and precipitation physics

— Operational aspects

— Weather radar and climate

— Weather Radar technologies

— Radar hydrometeorological applications

— Radar and society

— Space borne clouds and precipitation radar

The collection of all the abstracts presented at the 12th edition of the European Conference on Radar in
Meteorology and Hydrology are published in ERAD2024 Book of Abstract. Here we have the pleasure to
present the extended abstracts submitted to the conference. A total of 26 extended abstracts have been
provided and published in this book under Creative Commons Attribution 4.0 International licence. To view
a copy of this license, visit https://creativecommons.org/licenses/by/4.0/

Enjoy the reading!

The Organizing Committee of ERAD 2024
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T-matrix simulations of Spectral Polarimetric Variables from a cloud-
radar

L. Tsikoudi'?, A. Battaglia®, C. Unal*, K.-A. Voudouri!”, and E. Marinou!~?

!nstitute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236 Athens, Greece
’Department of Physics, National and Kapodistrian University of Athens, 15772 Athens, Greece
3Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Turin, Italy
“Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, the Netherlands
SDepartment of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

1 Introduction

Cloud radar observations and spectral polarimetry are crucial for understanding cloud microphysics. The overall purpose
of this study is two-fold: (a) to describe the methodology for simulating polarimetric spectral variables including white and
stochastic noise of a real radar spectrum, as well as the impact of atmospheric turbulence and (b) to compare simulations
with observed spectra for rain observations. Rain electromagnetic scattering properties have been historically computed by
assuming spheroidal shapes via the T-matrix method (Mishchenko et al., 2000). Such models have been found satisfactory to
explain radar and radiometeric measurements. However, raindrops generally change due to oscillations, which cause
departure from rotationally symmetric shape, and make T-matrix tools impractical since they hinge upon the assumption of
rotationally symmetric particles.

This work focuses on generating simulations of a 94 GHz cloud radar observations in rain conditions, pointing at 45
degrees and comparing with real observations. The spectral differential reflectivity (sZpr) and spectral differential phase
(sdnv) are the variables of interest. They are produced with the T-matrix method, by computing the electromagnetic scattering
properties and simulating the radar response.

The simulation tool is described in section 2 and explores diverse conditions, allowing for the modification of rain rate,
white and spectral noise, and turbulence parameters. The effect of atmospheric turbulence introduces an increased spread of
velocities within the radar volume and contributes to the blurring of the spectral features, such as smearing out the distinct
features (Mie scattering notches) in the Doppler spectrum. Incorporating the impact of turbulence in the simulations for
spectral polarimetric variables is a complex task and the attempt is discussed in this study.

2 Methodology

The simulations are generated by using a Python package for computing the electromagnetic scattering properties of
nonspherical particles using the T-matrix method (Leinonen, 2014), exclusively targeting in rain conditions. The
backscattering amplitude matrix, S, and the phase matrix, Z, are calculated for drops of different diameters D, with axis
ratios parameterized as following: Very small droplets are conceived as perfect spheres (axis ratio = 1), and as their size
increases, they are modelled as spheroidal particles and an oblate shape is assumed (axis ratio > 1). The scattering geometry
of the simulation corresponds to a radar pointing at a 45-degree elevation angle. Raindrops are assumed to be partially
aligned with their maximum dimension preferentially on the horizontal plane: scattering properties are averaged over
Gaussian distributions of canting angles with different standard deviations.

Firstly, the single-particle Polarimetric Variables are computed: the backscattering cross sections for Vertically and
Horizontally polarized radiation (cvv, oun), the differential scattering phase &. and the co-polar correlation coefficient phy.
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Figure 1: Left: Differential reflectivity Zpr, Middle: Differential phase op,, Right: Copolar correlation coefficient pyy as a
function of sphere equivalent-volume diameters, for a 94 GHz radar pointing at 45°. For the T-matrix method, a complex
refractive index of water at 10°C temperature is assumed. PO, RO stand for Perfect Orientation and Random Orientation,
respectively.

Then, an ideal spectrum Syv (1) for the V-channel is independently generated for each diameter D. A Gamma distribution
is used to represent the variability of a natural rainfall Drop Size Distribution N(D).

ERAD 2024 8



ERAD 2024 — 12" EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY

Soy (D) = o ND)o,, (D) (1)

A is the radar wavelength, |[K?| is derived from the dielectric factor of water, N(D) is the drop size distribution, ovy is the
backscattering cross section for V channel and u is the velocity of droplets along the line of sight of the radar beam.
Following Yu et al. (2012), the complex voltage signal in the V channel in the velocity domain can be written as:

Vy (W) = /Syy (Winge®™ (2)

where gl'l and 601 are independent, identically distributed random variables with uniform distribution between 0 and 1 and
between -m and =, respectively. The time series of complex voltage signal can be obtained via an inverse FFT of Vy. This
process can be repeated iteratively to generate independent stochastic realizations of the same spectrum. Similarly, for the H
channel in the velocity domain:

Vi (0) = v/sZpr (W) [sppy VI W) + /1 = spZ VP w)]eldw @ (3)

where the spectral variables spny, S0 and sZpr are presented in Figure 1, for each velocity bin, but also hold the prefix s in
the notation to differentiate them from the commonly used integral polarimetric variables. Vy[?! is generated according to (2)
with the same model spectrum Syy, but with a second independent sequence of random numbers (ul and 6P1). This process
is repeated for each velocity bin for the total of the FFT spectral points within the Nyquist interval. The inverse Fourier
transform of Vy and Vy represent simulated time series of complex signals for the V and H channels.

For the implementation of white noise, an approach similar to Eq. (2) is used:

Ny () = =8y IngBle®® and Ny (u) = —RyIngMe®™ (4)

where Xy and Xy are the noise level values for the V and H channel corresponding to the prescribed values of signal-to-noise
ratios (SNR), and ul?), 681 utl, 61 are again generated independently. The complex numbers that represent the simulation of
the noisy I and Qs in the frequency domain for the V and H channels are calculated from:

Sy(w) =Vy(w) +Ny(w) and  Sy(u) =Vy(w) +Ny(w) (5)
To introduce the turbulent motions of drops in the simulations, the Doppler spectra must be convolved with a turbulence

term Sair (6), that accounts for the turbulent motions within the atmosphere.

u?

1 562
Sair (W) = 7= -e 0 (6)

SHP = 7 Sy (u—8)S,, B)dE  (7)

where & is the convolution variable and Sair accounts for the turbulent motions within the atmosphere. Atmospheric
turbulence causes random fluctuations in the velocity of hydrometeors, thus broadening the Doppler spectrum. All droplets
are here assumed to have no inertial effects and therefore acting like perfect tracers (Figure 2).

94GHz, Doppler Spectrum, V Channel 94GHz, Doppler Spectrum, V Channel

2 ] a B .
104 — Noisy spectrum Sy(u) 103 Noisy & Turbulent spectrum S7()
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Figure 2: Left: Ideal Spectrum Syy (eq. 1) — dark blue line, Noisy spectrum Sy (eq. 5) — light blue line, Right: Turbulent
spectrum without noise effect (eq. 7) — dark purple line, Turbulent and noisy spectrum — light purple line. The grey dashed
line, represents the noise level Ry.

Then the broadened sZpr can be computed as the ratio of S™Pyy(v) to S™P®yy(v) whereas the turbulent-broadened
parameters p™®yy and 8%y are then calculated respectively as the amplitude and the phase of the variable:
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<Sp WSy (w)>
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3 Results

To assess the accuracy of the cloud radar simulation methods, we compare the measurements with the simulated data.
This comparison aims to validate the performance of the simulations and identify any discrepancies that may arise from the
model assumptions or parameter settings. The cloud radar measurements were obtained using an RPG Frequency Modulated
Continuous Wave (FMCW) Dual Polarization W-band Cloud Doppler Radar, operating at 94 GHz.

One case study from 3 February 2021, is presented in Figure 3. The rainfall is moderate, with rain rate approximately
between 6 and 7 mm/h. The spectrum is acquired at an altitude of 484 meters above ground level. At this altitude, there is
significantly less turbulence relatively to lower levels, due to the influence of surface effects diminishes, leading to generally
more stable and less turbulent atmospheric conditions.

94GHz, Chirp 1 V Channel, 2021 Feb 03, 12:40
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Figure 3: 03 Feb 2021, 12:40z with vertical profiles for reflectivity. The level that is used for case studies are marked by
the black rectangle.

For the generation of the simulation of the spectral polarimetric variables, the optimal fit for the drop size distribution must
be identified in order to apply equation 1. Therefore, the Least Squares Method was employed to minimize the sum of the
squared differences between the measured and simulated spectra, ensuring that the best-fitting gamma DSD is selected. The
best fit is presented in Figure 4.

20

—— simulated spectrum
ol m—daty
-10 ; : ) ‘ : !

Spectrum V Channel (dBZ)

0 1 2 3 4 5 6
Velocity (m/s)

Figure 4: Measured Doppler Spectrum (black line) and optimum-fitted Gamma DSD (blue line). The purple dashed line
indicates the threshold for applying the Least Squares Method in order to find the optimum fit.

The simulated variables as calculated from equation 8, are represented in figure 5. The black lines represent the measured
sZpr (left) and sduv (right), while the blue line is the simulation. The comparison between cloud radar simulations and
measurements exhibits some correlation; however, there are notable discrepancies that indicate limitations in the current
simulation model.
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Figure 5: Spectral polarimetric variables of case study. Left panel: Spectral Differential reflectivity sZpr, Right panel:
Spectral Differential phase sony. The black lines represent the measured data, the blue lines represent the simulations from
the above-described method.

We observe notable discrepancies in the simulations (blue lines) when compared to observational data. Specifically, the
expected minima, as predicted by theoretical models, are not well-represented in the data, especially for Zpr. For opy, there is
better agreement, though this deteriorates with larger drops. The simulations tend to produce more pronounced minima than
those observed, suggesting potential issues in the microphysical assumptions, such as the parameterization of the drop shape.
In our study, all drops are modelled as spheroids. In these cases, this T-matrix approach may fail at high frequencies, like 94
GHz.

4 Conclusions

This study compares simulated spectral polarimetric variables with real measurements from a 94 GHz cloud radar under
moderate rain conditions. The results show that the simulations closely match observations within a specific spectrum range,
particularly for Doppler velocities up to 5 m/s, where the polarimetric signal is minimal due to the predominantly spherical
shape of raindrops. The simulations more accurately represent the maxima than the minima, specifically for the differential
phase sdgy. While the minima of the observed data for both sZpr and sdnv appear truncated, the simulated minima are
significantly deeper. Despite these discrepancies, the overall trends in both simulations and measurements remain consistent.
A potential explanation for these discrepancies may be found in the assumptions of the T-matrix approach, which models all
drops as spheroidal or rotationally symmetric particles. Since raindrops oscillate and lack rotational symmetry, traditional
methods like the T-matrix may produce inaccurate scattering parameters, particularly for resonant particles, where radar
wavelengths are comparable to or smaller than raindrop size. More accurate methods should be explored. Future research
should investigate whether more advanced scattering models can account for the observed variability, or alternatively, data
from low turbulence conditions could be used to create look-up tables of polarimetric scattering properties based on
incidence angle in a data-driven approach. This work contributes to the broader scientific effort to improve cloud radar
simulations and advance the understanding of cloud processes and their impact on atmospheric dynamics.
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Positive and Negative Differential Phase upon Scattering:
Observations and Utilization in Microphysical Retrievals

Valery Melnikov!?, Dusan S. Zrnic?, and Arthur Witt>
1

University of Oklahoma, CIWRO, Norman, OK, USA.
2

NOAA/OAR National Severe Storms Laboratory, Norman, OK, USA.

Abstract: The impact of the radar differential phase upon transmission (DPT) on measured differential phase (DP) is
demonstrated using data from collocated S-band weather radars employing simultaneous transmission and reception
of orthogonally polarized waves. It is shown that measured DPs from the radars are of opposite signs depending on
the DPTs. These observations are the first evidence of DP dependence on the radar parameter DPT. The measured
radar variables can be used to retrieve the microphysical hydrometeors’ parameters.

1. Radar data

It is well known that reflectivity (Z) and differential reflectivity (ZDR) values in the melting layers (ML) are larger
than those in areas just above and below. The correlation coefficient (CC) values drop in the ML. Increased values of
differential phase (DP) in ML are reported (for instance, [1-3]). Such dependencies can be observed in the top panels
of Fig. 1 collected with S-band WSR-88D KCRI located at Norman, OK, USA. The data were collected on 28 January
2024 at 180344 UTC at an antenna elevation angle of 10°. The ML is easily observed in the Z, ZDR, DP, and CC
panels.
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Fig. 1. (top): PPIs from KCRI collected 26 Jan 2024 at 180344 UTC at an elevation of 10°. (bottom): As in top, but
from KOUN at 180427 UTC.

KCRI radar is a test system of the NWS Radar Opcrations Center. The radar is located 234 m apart from
WSR-88D KOUN operated by the NOAA/OAR National Severe Storms Laboratory. The radars employ simultaneous
transmission and reception of orthogonally polarized waves and operate at the wavelengths of 10.0 cm (KCRI) and
11.1 cm (KOUN). It can be noticed from panel (g) in Fig. 1 that the color of the ML is greenish, indicating that the
KOUN’s DP values in the ML are lower than those above and below it (in light blue). Fig. 2 depicts range profiles of
the radar variables obtained by averaging over 360°. KCRI was running VCP-12 at the time, while KOUN was running
an experimental VCP with a dwell time of 128 ms at the pulse repetition frequency of 1000 Hz, i.e., the number of
averaged samples was 128. The elevation of 10° was common for both radars at 1803-1804 UTC.
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Fig. 3 presents KOUN’s observation of the CC and DP for four cases. In all KOUN’s cases, the scattering

differential phases from melting layers were negative.
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Fig. 2. (top): Range profiles of the KCRI s radar variables obtained by averaging the data in Fig. 1 (top) over
azimuth. The height of maximum ZDR values is shown with the red horizontal line. (bottom): As in the top, but from
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Fig. 3. KOUN s range profiles collected on the indicated dates.
2. Interpretation

Hydrometeors in MLs are wet ice particles in a plate-
like shape. This representation comes from models of
particles as a collection of stitched ice crystals (e.g.,
[4]) with water inclusions (see also Fig. 4) or a mixture
of'ice and water as in [5]. Due to water surface tension,
the shape of water inclusions is close to a plate.

The scattering geometry of a wet crystal is
shown in Fig. 4, where an ice dendrite (in yellow)
holds a plate-like water droplet (in blue). The frame
OXYZ has the Z axis oriented vertically. OM is
oriented along the minor droplet’s axis, so the angle
between the Z axis and OM is the canting angle 6.
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The second and third orientation angles are ¢ and a. The latter shows the rotation of the droplet around the
axis OM. Point N lies in the OXY horizontal plane and point M in the OZN plane. The angles 6, ¢, and « are Euler’s
angles. The vector k shows the direction of propagation of the impinging waves Ey, and E,. where the subscripts mean
horizontal and vertical polarizations at horizontal incidence. The particles flutter in the air and the angles 8, ¢, and a
vary over time.

The amplitudes of scattering fields ey, and e, from a single particle are described by the following matrix

equation (e.g. [6]): c . ¢ . :
ey v
(en) = (3 )0 oo ) (o o) (): o

where Cg;, and Cg, are the radar constants (the range dependence is included) for the horizontal and vertical radar
channels, = @4, Y, is the impinging phase with ¢4, being the one-way propagation differential phase and i, is
the differential phase upon transmission, y = @4, + ¥, with 1), being the receiver differential phase. Phases ¥, and ¢,
may differ because the signal paths in a radar transmitter and a receiver are different. The Sy, Syy, and Sy, are the
scattering matrix coefficients.
The measured differential phase @pp is
¢DP=2(Pdp+¢t+ Y+ 6=p+y+ 6, ()

where § is the differential phase upon scattering. The constants Cgj,,, in (1) are obtained from radar calibration and
are important in the reflectivity and ZDR measurements; all other radar variables are independent of these constants.
We consider calibrated radar and known Cgy, ,,, hence the constants can be omitted in further discussion. Then (1)
simplifies to

e = Spn +Swwe’?  and e, = (Spelf + Sy el 3)
Radar receives waves from all scatterers in the resolution volume and resulting voltage is
By = nepy exp(ikn,), @)

where n numerates the scatterers and exp(ikr;,) accounts for the range 7;, from radar to the n™ scatterer. The correlation
function in the channel with the horizontally polarized wave is

Ry, =< Ej Ey >, (5)
where the brackets stand for ensemble averaging and the asterisk indicates complex conjugate. The averaging is
performed over the sizes, shapes, orientations, and distances 7;,,. Assuming that the scattering amplitudes do not depend
on the distance between scatterers, the averaging over distances can be separated from other averaging. Then range
reshuffling of the scatterers leads to

RhV =< N(D)eﬁr(el P, a,D)evr(B, b, a,D) >. (6)
where N(D) is the size distribution of the scatterers with D being a characteristic size of the scatterer (e.g., its maximal
diameter) and the sum in (4) is replaced with the mean product and the brackets stand for averaging over the sizes,
shapes, and orientation angles 6, ¢, and a.

Hydrometeors in MLs can be considered Rayleigh scatterers at S band. The scattering matrix elements for

Rayleigh scatterers and an antenna elevation angle v can be written as (e.g., eq. (2.53) in [7]),

Spn = ag +Aasin?é sin?e, (7a)

Sy = aq +Aa (sin?v sin?6 cos?¢ + cos?v cos?6 + sin2v sinf cos cosg) , (7b)

Shv = Aa (sinv sin?@ sing cosg + cosv siné cos6 sing) . (7¢)
where a, and o, are polarizabilities along the major and minor spheroid axes and Aa = oy - a..

Cloud particles in MLs change their orientation angles 6, ¢ and a over time. The angles ¢ and o can be
considered uniformly distributed in the interval 0 — 360°. Variations in the canting angle 6 (Fig. 2) can be characterized
with some distribution in the interval 0-180°. The orientation angles are described by the Fisher distribution P(6, ¢).
For the uniform distribution in ¢ and «a,

P(0) = sy explucost), 120, ®)

where the parameter ¢ can be represented via the mean canting angle < 8 > or the width oy of the distribution of
canting angles:

<0 >= [0sinf P(6)dob,
<02>=[T0%sind P(0)dO, oy =(<02>—<0>)?

The matrix coefficients (7) should be inserted into (6) and averaged to obtain the radar variables. The
results for Ry, is
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Ry, = {|aa|2 + a,*Aa [1 —J; — sin?v (1 - %]1)] + %aaAa*jl + % |Aa|zB} et +h) +§ |Aa|?BelV=F),
: 5
B =]y —J;—sin?v(],=2];),

J, =<sin” @ >:2{coth,u—l},
U

U

Fig. 5 depicts dependencies of CC and phase 6 on the
antenna elevation angle at various DPTs and an axis
ratio (b/a) of 0.5 and <> = 10°. The dependencies
should be applied to particles at a height of maximum
ZDR, i.e., for particles just before they collapse into
droplets. It is seen from Fig 5 (right) that ¢ changes
sign: it is positive at DPT from 0° to 180° and is
negative in the DPT interval 180° — 360° (or from 0° to
-180°).
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Fig. 5. (left): The correlation coefficient as a function
of the antenna elevation angle at indicated DPT5.
(right): As in the left, but for the phase 0.
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3. Retrieval results

Phase ¢ depends on the axis ratio, orientation of
particles, and DPT. To use ¢ and CC for microphysical
retrievals, the system DPT must be known. The
KOUN’s DPT has been estimated from observations
of'insects [8], DPT = 240° (-120°). This DPT results in
negative 0 (Figs. 2, 3, 5). The radar variables Z, ZDR,
DP, CC, and KDP from the range gate of maximal
ZDR can be used for estimating the mean size (D),
number concentration (N), axis ratio (b/a), and
orientation parameter <¢>. Table 1 shows
dependencies of the radar wvariables on the
microphysical parameters, where ‘Yes’ indicates a
dependence and ‘No’ means independence.

Our retrieval procedure consists of two steps. On
the first step, the mean axis ratio and <¢> are obtained
from the measured ZDR, CC, and J using the best
match. These radar variables do not depend on D and
N. On the second step, D and N are obtained from
measured Z and KDP using obtained b/a and <6>. The
radar variables have been taken from a range gate
corresponding to maximal ZDR and minimal ¢ and
CC. We assume that in this gate, scattering from ice is
insignificant and the backscatter signal can be
attributed to water inside wet snowflakes.

Table 1. Dependencies of the radar variables on microphysical parameters.

Size (D) Number concentration | Axis ratio Orientation DPT
(N) (b/a) (<6>)
Yes Yes No Yes No

Reflectivity
ZDR No No
Diff. Phase No No
KDP Yes Yes
Corr. Coefficient No No

Yes Yes No
Yes Yes Yes
Yes Yes No
Yes Yes Yes

The retrieval results from a KOUN’s case are presented in Fig. 6 where the panels contain 360 data points
corresponding to 360 azimuthal degrees, i.e., the retrievals have been performed for each radial. Melting layers are
highly nonuniform with quite different radar variables in the radar radials. One can see significant variations in the
retrieved D, b/a, and N, but a rather narrow distribution in <@>. The latter shows that the particles had a significant
canting. The median retrieved parameters are shown in the angular brackets. These medians have been obtained

from the retrieved 360 data points in each panel.
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KOUN 12 May 2024, 1819 UT.
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Fig. 6. Retrieval results from KOUN for 12 May 2024 at 1819 UTC,

The median D of 2.8 mm signifies rather large and oblate (<b/a> = 0.44) scatterers. Most likely, the retrieved
data are biased toward large scatterers because of the strong dependence on D as it typically occurs in radar
observations. So, we attribute the obtained retrieved results to large particles in the ML. Multiwavelength radar
experiments could shed more light on the accuracy of these retrievals.

4. Summary
The following conclusions follow from the presented results for S band polarization radars employing
simultaneous transmission and reception of electromagnetic waves.

*  Scattering differential phase J can be positive and negative depending upon the system DPT. To use
the differential phase and correlation coefficient in retrieval methods, DPT should be known
(measured).

*  The differential phase is a powerful variable for retrieval procedures: it is readily measurable and is not
biased by noise in contrast to other radar variables.

*  Measured Z, ZDR, DP, CC, and KDP (five radar variables) can be used to obtain sizes, axis ratios,
orientation, and number concentration (four variables) of hydrometeors. The discussed approach could
not be limited to melting layers and could be applied, for instance, to the dendritic growth layer.

*  Radar with a digital transmitter can be capable of changing its DPT. This capability can be used to
measure CC, DP, and KDP at various DPTs and make microphysical retrievals more precise.
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1 Introduction

Radar echo extrapolation is a more effective method for short-range weather prediction but loses accuracy with longer
lead times due to errors in estimating convective system generation, dissipation, and radar echo motion fields(Germann et al.
2006; Tsonis and Austin 2010; Turner et al. 2004). These uncertainties challenge in capturing the full range of temporal and
spatial variations in precipitation and motion fields. To address these issues, various methods introduce stochastic
perturbations into the rainfall or motion field to develop an ensemble nowcasting, such as Short-term ensemble prediction
systems (STEPS), which decomposes precipitation fields into different spatial scales to determine variations in precipitation
at smaller scales and generate ensemble nowcasting, and other approaches that use historical meteorological data to inform
perturbations(Atencia and Zawadzki 2014, 2015; Pulkkinen et al. 2019; Sokol et al. 2017). Some research in Taiwan also has
improved forecasts by integrating MAPLE with wind field data and high-resolution numerical models, enhancing predictions,
particularly in complex terrains(Chung and Yao 2020; Lin et al. 2020).

This study builds on these previous research by conducting a spatial and temporal analysis of three-dimensional motion
fields derived from radar data for five weather events in Taiwan: autumn precipitation, Meiyu front, squall line, afternoon
thunderstorm, and typhoon. The results inform the development of an ensemble nowcasting scheme, where perturbations are
introduced into the two-dimensional motion field and adjusted based on the 3D motion field spatiotemporal analysis. The
effectiveness of this ensemble nowcasting framework is then compared to deterministic MAPLE using various verification
scores, focusing on the accuracy of radar echoes and accumulated rainfall forecast.

2 Methodology

The following section introduce the deterministic MAPLE and the ensemble version of MAPLE that were used in this
study.

2.1 Deterministic MAPLE

MAPLE, a nowcasting system developed by the J. S. Marshall Radar Observatory at McGill University, was employed.
MAPLE uses the VET technique to compute the motion fields based on past radar echo observations. These motion fields
were subsequently applied in extrapolation forecasting through a semi-Lagrangian backward scheme, in combination with
the observed radar data at the forecast’s initial time. Expanding on the MAPLE nowcasting system, this study incorporated
the observed radar echo data at each height. The VET method was employed to estimate motion fields at different altitudes.
These two-dimension motion fields at each height, called 3D motion fields, were then analyzed and applied to the ensemble
nowcasting scheme developed in this study, which is based on MAPLE.

Jver(U) =Jy +Jy (N
Jw = [[oBE[W(t,x) — W(ty — At,x — uAt)]*dxdy ©)
2u\*> (9%’ 2u\*  [9%v\® [9%v\® 9%v\* 3)
Jy = YJJ, (ﬁ) +(W> +2<_6x6y> +(§) +<ﬁ) +2<axay> dxdy

The cost function for the VET technique is represented by Eq. (1). U is a two-dimensional motion vector, which represents
the 2D radar echo motion field information obtained after minimization of this cost function. Jy represents the sum of
squares of the residuals, serving as a conservation of reflectivity constraint. J,, in Eq. (1) denotes a smoothness penalty
function, which aggregates the squares of the second derivatives of the motion field in space. In the above equations, § and
Y is the weight for the constraint of conserved reflectivity and the coefficient for the smoothing penalty weight, respectively

By using the aforementioned VET computation, a set of radar echo motion field information with a vector count of m x n
was obtained. The semi-Lagrangian backward scheme proposed by Germann and Zawadzki (2002) was used for
extrapolation forecasting.
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2.2 Ensemble version of MAPLE

One of the underlying nowcast uncertainties in radar echo extrapolation comes from the uncertainty of the motion field at
different heights. To address this issue, this study employed the VET method to compute the 2D radar echo motion field
based on the observed composite radar reflectivity at different heights from previous observations. Perturbations were
introduced into the motion field, and the standard deviation values for the added perturbations were adjusted based on the
spatiotemporal characteristics of the 3D motion field across different weather events. This approach tries to capture the
variation of motion field and forms the foundation of the ensemble nowcasting scheme implemented in this study.

A 2D perturbation field can be generated using a power-law filter, as demonstrated by Schertzer and Lovejoy (2012) and
Zhivomirov (2018). The standard deviation and mean of the color noise obtained after the Gaussian white noise undergoes
the power-law filter process remain 1 and 0, respectively. To generate perturbation magnitudes suitable for different weather
events, it is necessary to readjust the standard deviation values of the perturbations based on the analysis results of the
motion fields over time and vertical spatial heights. Eqs (4) and (5) are the formulas for calculating the mean and standard
deviation of motion fields at different heights over time and space. Because grid points lacking radar echo information are
considered less reliable in the VET method, our analysis of standard deviation and mean values focuses solely on grid points
with available radar echo data.

1 N
X, = NZ X0 4
=1

v o (5)
0;j = ﬁZ(xi,j,k - xz,])z
k=1

In the spatial analysis, i and j in Eqs (4) and (5) represent the grid points in the x and y directions of the 2D motion field,
N represents the total number of vertical height layers and k is the number of vertical levels. On the other hand, when the
Eqgs (4) and (5) are used in the temporal analysis, the variable k denotes the number of time steps, and N is the total number
of time steps. After that, the standard deviation of perturbations in the u and v directions was adjusted to the suitable values
for each weather event based on the spatiotemporal analysis of the 3D motion field across various weather events. By
incorporating these adjusted perturbations into the initial motion field derived from the observed 2D composite reflectivity, a
revised motion field is obtained after perturbation. Figure 1 presents the process of integrating random perturbations.
Because each set of perturbations in the u and v directions is randomly generated from Gaussian white noise fields, the
ensemble size can be determined by the number of generated perturbation sets. To derive ensemble nowcasting outcomes,
these newly generated motion fields will ultimately be combined with observed radar echo data at the initial time for
extrapolation forecasting.

(a) whits Holsa Vectar ield (b) Color Maise vector

as —
. b
B
R e
: = 3y f-ia“l
H o |
= I =
Color noise X n VET motion field New VET motion field x n ~3 . I
from MAPLE % 1 A

ensemble members x n

Figure 1: (a) Both the u- and v-velocity are the Gaussian white noise fields, forming the distribution of the motion field. (b)
The color noise from (a), which is produced by the power-law filter. (c) The process of adding the perturbation into motion
field. Adjust the standard deviation of u- and v- viocity color noise field to the standard deviation with spatial and temporal
analysis(left, color noise *xn). Add the perturbation to the motion field which calculated by VET methods(middle, VET
motion field from MAPLE) and produce the new motion field(right, new VET motion field xn). The new motion field will be
used as the motion field of the ensemble nowcasting and produce n ensemble members.

ERAD 2024 19



ERAD 2024 — 12" EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY

3 Dataset

For this study, 374 3-h rainfall events were selected, including squall lines, Meiyu front, autumn precipitation, afternoon
thunderstorms, and typhoon. Since Yilan, in northeastern Taiwan, experiences more autumn precipitation than other regions,
the analysis and discussion of motion fields and accumulated rainfall will be focused on the performance in this region.
Specific details regarding the selected weather events are presented in Table 1. The precipitation data and high-resolution
radar observations utilized in this study were sourced from the quantitative precipitation estimation and segregation using
multiple sensor (QPESUMS) severe weather monitoring system, regulated by the Central Weather Administration. The 2D
reflectivity mosaic was used in ensemble nowcasting scheme. 3D reflectivity mosaic dataset was constructed by
interpolating polar coordinate data from the ten individual radars into a 3D Cartesian coordinate system (Zhang et al. 2009).
This dataset facilitates the computation of the 3D motion field. The vertical resolution comprises 21 layers, with a resolution
of 1 km for altitudes exceeding 6 km and 0.5 km for altitudes ranging from 1 to 5 km. Both 2D and 3D reflectivity mosaic
has a spatial resolution of 0.0125° and a temporal resolution of 10 min. The domain of these dataset can refer to Fig 2.

Table 1. The weather events used in this study.

Event type Event date Number of periods for 3-h forecast (hr)

Autumn precipitation 2021/11/26~11/28 52

Meiyu front 2022/05/24~05/26, 96
2022/06/06~06/08

Afternoon thunderstorm 2022/06/24, 2022/06/25, 32

2022/07/04, 2022/07/05
Squall line 2022/06/09, 2022/07/02, 26
2023/04/19

Typhoon 2010/09/18~09/20, 168
2015/08/07~08/09,
2016/09/26~09/28,
2017/07/28~07/30

Total 14 events 374 (total 1122 hours)

The precipitation data used in this study were subject to the quantitative precipitation estimation method corresponding to
the radar band specific to each of the ten meteorological radars in Taiwan (see in Figure 2). the estimated quantitative
precipitation over land areas was adjusted using data from ground-based rainfall stations (Chang et al. 2021). This
precipitation estimate served as the foundation for the observed precipitation in the present study. To translate the predicted
reflectivity into a precipitation value, Chang et al. (2017) specified a method of using of the Z—R relationship that is suitable
for applications involving Taiwanese rainfall (refer to Eq. (6)). The verification domains for rainfall and reflectivity
corresponding to each of the five categories of weather events are presented in Figure 4(b). Specifically, the rainfall
verification domain included only the rainfall data over land areas.

Z = 223.04 x R*51 (6)
(1) P (b)
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Figure 2: (a) Topographic map of Taiwan. The shaded represents terrain height in meter. The locations and names of cities
mentioned in this study are also indicated. (b) The radar data and verification domain in this study. Green triangles and red
circles are the location of S-band and C-band radar. Black rectangle is the domain of 2-Dimension composite reflectivity
data. Red dash line rectangle is the domain of 3-Dimension radar data. Yellow rectangle is the domain of Meiyu front,
afternoon thunderstorm, squall line and typhoon events for reflectivity and rainfall verification. Green and purple rectangle
are the domain of autumn precipitation for reflectivity verification and rainfall verification, respectively.

4 Results

To examine the spatiotemporal properties of the motion field in each precipitation event, we computed the mean and
standard deviation of the u- and v-component at each grid point in the 3D motion field across different vertical heights and
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time intervals (see in Section2.2). On the basis of the spatial and temporal statistics, Table 2 shows the average means and
standard deviations in the u and v directions under various weather events. These results served as the basis for generating
motion field perturbations in the ensemble nowcasting scheme. This study utilized 100 ensemble members to conduct a
three-hour ensemble forecast.

Table 2. The mean and standard deviation of motion fields from five types of weather events in this study.

Standard deviation
u(m/s) v(m/s)
Autumn precipitation 1.5 1.3
Meiyu front 1.75 0.8
Afternoon thunderstorm 0.6 0.7
Squall line 1.4 0.97
Typhoon 1.13 1.21

For the investigation which employ comparisons between ensemble forecast radar echoes and observed radar echoes in
order to verify the ensemble nowcasting, we use the ROC curves, reliability diagram and rank histogram.Figure 3 shows the
over all performance of these five weather event in this study. It demonstrates that the ensemble version of MAPLE
outperforms the deterministic MAPLE (dash line) over a lead time of three hours in ROC curves, indicating robust
discrimination capabilities for events involving anticipated rainfall. The reliability diagram shows the ensemble version of
MAPLE demonstrates stable reliability performance within a three-hour forecast period across all weather events. But it also
tends to show overestimation at high forecast probability and underestimate at low forecast probabilities. This indicates that
the ensemble nowcasting system may produce overconfident forecast results due to its inability to accurately capture the
generation and dissipation of precipitation. However, the rank histogram shown in Fig. 3(c) generally exhibits a U-shape and
is slightly left-skewed overall, indicating a minor overestimation by the ensemble forecasting system. For the maximum and
minimum ranks, the proportion is approximately 10%, while the distribution of other ranks remains consistent over time,
demonstrating the forecast stability of this ensemble system.

A comparison of 3-h accumulated rainfall forecasts between deterministic MAPLE and the ensemble version of MAPLE,
including QPFP20, PM, and NPM, was conducted across five different weather events: autumn precipitation, the Meiyu
front, squall line, afternoon thunderstorm, and typhoon in Taiwan. Figures 4(a) and 4(b) present the average SCC and RMSE
scores across the five types of weather events examined in this study. Overall, the ensemble nowcasting system developed in
this research more accurately represents the distribution and magnitude of 3-h accumulated rainfall compared to the
deterministic MAPLE, aligning more closely with observed accumulated rainfall. This indicates that the ensemble version of
MAPLE indeed improves forecast accuracy. Figures 4(c) and 4(d) illustrate the differences in the ETS and BIAS scores
between deterministic MAPLE and the ensemble version of MAPLE for 3-h accumulated precipitation across five weather
patterns at various precipitation thresholds. the ensemble version of MAPLE performs better at rainfall thresholds exceeding
0.5 mm/hr. Among these methods, QPFP20, which places more emphasis on intense precipitation characteristics, shows a
BIAS value closer to 1 at higher thresholds, indicating the smallest deviation from the observed accumulated rainfall.
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Figure 3: The average (a) ROC curves, (b) reliability diagram and (c) rank histogram of five weather events (autumn
precipitation, Meiyu front, afternoon thinderstorm, squall line and typhoon) in Taiwan with 100 ensemble members. The
dash lines in ROC curve represent the deterministic MAPLE and the solid lines are ensemble version of MAPLE.
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Figure 4: The average (a) SCC, (b) RMSE, (c) ETS and (d) BIAS score of five weather events (autumn precipitation, Meiyu
front, afternoon thinderstorm, squall line and typhoon) in Taiwan.

5 Conclusions

The radar echo extrapolation is effective for short-term weather forecasting but encounters significant limitations as
forecast lead times increase. These limitations primarily arise from the uncertainty in estimating motion fields and an
inadequate representation of convection growth and decay. To address these challenges, this study expands on the concept of
radar extrapolation by using 3D radar observation data to compute the comprehensive motion fields of radar echoes. This
approach captures movement details across different spatial heights. Through an analysis of temporal and spatial variations,
this study developed an ensemble nowcasting system based on radar echo extrapolation. The study examined and analyzed
forecast accuracy across five prevalent weather patterns in Taiwan: afternoon thunderstorms, squall lines, Meiyu front,
autumn precipitation and typhoon.

When tested with 100 ensemble members, the ensemble nowcasting system displayed robust performance, extending its
forecasting capabilities to 180 minutes across various weather scenarios in Taiwan. Notably, it significantly improved the
accuracy of rainfall predictions and mitigated overestimation issues commonly observed in the deterministic MAPLE
forecast. However, despite these advancements, the ensemble nowcasting system still faces challenges in accurately
forecasting convective generation and dissipation, which are critical for predicting weather systems with high variability,
such as thunderstorms. Overall, the study highlights the potential of ensemble nowcasting to provide more reliable and
precise forecasts, while also recognizing the need for further refinement to address the inherent uncertainties associated with
convective processes.
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Radar-based studies of terrain-induced windshear and microbursts
near the Hong Kong International Airport during the passage of Super
Typhoon Saola in September 2023
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'Hong Kong Observatory, Hong Kong, China
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1 Introduction

Super Typhoon Saola came very close to Hong Kong on 1 and 2 September 2023 with maximum
sustained wind near its centre exceeding 200 km/h. During the passage of Saola, significant terrain-
induced windshear and microbursts as well as severe turbulence affected the Hong Kong International
Airport (HKIA). As the Hong Kong Observatory (HKO) has installed a C-band Terminal Doppler
Weather Radar (TDWR) at Brothers Point (BP) for monitoring windshear and microburst at HKIA,
observations from the BP TDWR as well as other X-band and S-band weather radars operated by HKO
(Figure 1) were used for studying the characteristics of terrain-induced windshear and microbursts caused

by an intense tropical cyclone.

Figure 1:The locations of Phased Array Weather Radar (PAWR) at Sha Lo Wan (SLW), S-band weather
radar at Tate’s Cairn (TC), X-band weather radar at Siu Ho Wan (SHW) and C-band Terminal
Doppler Weather Radar (TDWR) at Brothers Point (BP).

2 Methodology

Spatial density maps showing the frequency occurrence of windshear and microbursts alerts issued
by the BP TDWR and SHW X-band radar were compiled for identifying the spatial relationship between
the alerts and the mountainous regions near the HKIA. Eddy Dissipation Rate (EDR) maps estimated
using spectral width data from the weather radar at TC and SLW PAWR were used for assessing the
severity of turbulence. The fields of Doppler velocity and spectral width as well as the associated cross-
sections from the radars were analysed for studying the characteristics and structures of high and low

wind streaks propagating out from the terrain near the HKIA.
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3 Dataset

The dataset used in the study included primarily observations from the HKO’s weather radar network
including X-band PAWR at SLW, S-band radar at TC, X-band radar at SHW and C-band BP TDWR
together with SLW’s wind profiler data and wind data recorded by the HKO’s automatic weather station
(AWS) network during the period of 1-2 September 2023.

4 Results
Observations from HKO’s wind profiler at SLW showed that winds over Hong Kong were generally
from the north to northwest on the night of 1 September 2023 which then veered to the east to southeast

in the morning of 2 September 2023 in line with the westward movement of Saola (Figure 2).

1}

Sham Shui Po Wind Profiler Winds from 2023 Sep | 09°-00H - 2023 Sep 1 21:00H Sham Shui Po Wind Profiler Winds fromi 2023 Sep 121 00H - 2023 Sep 2 09 00H

mis (knots)
—

mis (knots)

I 33 (64) 33 (64)

25 (48) 25(48)
17 (34)

17 (34)

1 (22) 1(22)

Figure 2: Wind profiler measurements at Sha Lo Wan (SLW), Hong Kong on 1-2 September 2023. One
pennant, one long barb, and one short barb indicate each 25.7 ms™! (50 knots), 5.1 ms™! (10
knots), and 2.6 ms™ (5 knots), respectively. The x-axis is the local time (UTC + 8 hours) in the
format of DD/HH and the y-axis is the height.

The spatial density maps showing the frequency occurrence of windshear and microbursts alerts
issued by the BP TDWR and SHW X-band radar from 16:30 HKT on 1 September 2023 to 07:00 HKT
on 2 September 2023 were compiled (Figure 3). The maps suggested the presence of two NNW-SSE
orientated high wind streaks propagating southeastwards from two major mountains (Castle Peak and
Kau Keng Shan with heights over 500 m amsl and 400 m amsl respectively) to the north of the HKIA
when local prevailing winds were from the north to northwest. As Saola moved further west in the early
morning of 2 September 2023 and local winds veered to the east and southeast, more windshear and
microbursts alerts were triggered which were associated with three separate WNW-ESE orientated high
wind streaks emanating from the northwestern side of the mountainous Lantau Island to the south of the
HKIA. Those high wind streaks tied in well with the positions of Por Kai Shan (over 400 m amsl), Nei
Lak Shan (over 700 m amsl) and Cheung Shan (over 400 m amsl) respectively. Also, high frequency
occurrence of windshear and microburst was detected by the SHW X-band radar over the northeastern
part of the HKIA (blue ellipse in the right panel of Figure 3) which was thought to be caused by the high-
speed gap flow near the Lo Fu Tau mountain similar to the study by Chan et al. [1].
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Figure 3: Spatial density maps showing the frequency occurrence of windshear and microbursts alerts
issued by the BP TDWR (left) and SHW X-band radar (vight) from 16:30 HKT on I September
2023 to 07:00 HKT on 2 September 2023. Terrain contours are in 100 m intervals.

Detailed analysis of radial velocity fields from 0.9° scans of SHW X-band radar around 16:30
HKT on 1 September 2023 showed NNW-SSE orientated high and low wind streaks when the prevailing
winds were from the north to northwest. Similar observations were found in Shun and Lau [2] and Chan
and Hon [3]. The high wind streaks with width of around 1-2 km exhibited meandering wavy
characteristics which suggested the possible existence of vortex shedding (Figure 4).

PPI (Vvu)
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HKX-HKOHQ
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% Clutter Filter: DFT6
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Figure 4: High wind streaks detected by the SHW X-band radar at 16:30 HKT on 1 September 2023 when

local prevailing winds were from the north to northwest.

From 16:29 to16:32 HKT, pockets of high wind (radial velocity more than 20 ms™) were observed
bursting out from the Castle Peak and propagated southeastwards with a speed of around 90-100 km/h.
The Eddy Dissipation Rate (EDR) at 1 km height estimated using spectral width data from the weather
radar at TC and SLW PAWR showed high EDR (with maximum values reaching the range of 0.45 - 0.50

m?3s7!) southeast of the Castle Peak, indicating the occurrence of severe turbulence (Figure 5).
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Figure 5: EDR (in units of m*>s ') maps at height of 1 km based on the spectral width data of the weather
radar at TC (left, 16:30 HKT) and the SLW PAWR (right, 16:32 HKT) on 1 September 2023.

When low-level winds changed to east to southeasterlies, bursting of high wind pockets (radial

velocity over 17 ms™) from Nei Lak Shan was observed by BP TDWR at 0.6° scan in 02:51- 02:54 HKT

on 2 September 2023. The pockets propagated west-northwestwards with a speed of around 80-90 km/h.
The 1-km height EDR values to the west of Nei Lak Shan were in the region of 0.35 - 0.40 m*?s!
(moderate turbulence). These high wind pockets lasted for a few minutes before losing the identity for

tracking their movements.

The SLW PAWR provided useful observations of the vertical structure of those high wind streaks.
When surface winds prevailed from the north to northwest such as 16:30 HKT on 1 September 2023, cross
section of radial velocity from SLW PAWR showed that the jet core of the NNW-SSE orientated high
wind streaks was around 0.6 to 1 km in height. When surface prevailing winds were from the east to
southeast as in the case at 03:06 HKT on 2 September 2023, the jet core of the WNW-ESE orientated high
wind streaks was about 1 km in height but the core thickness grew further downwind with a tendency to
spread downwards closer to the ground beyond 5 km from the coast of the Lantau Island. Similar heights
for the jet cores of the above NNW-SSE and WNW-ESE high wind streaks were also observed through
the cross sections of radial velocity from both BP TDWR and SHW X-band radar. In addition, cross
section of spectral width from SLW PAWR at 02:55 HKT on 2 September 2023 showed apparent sign of
turbulence with spinning eddies below 2 km (Figure 6). The above observations suggested the downward

transport of momentum and vorticity aloft.
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Figure 6: Cross-section of spectral width from SLW PAWR at 02:55 HKT on 2 September 2023 showing

apparent sign of turbulence with spinning eddies below 2 km.

S Conclusions

The passage of Saola on 1-2 September 2023 provided an invaluable opportunity to study the
characteristics of terrain-induced windshear and microbursts caused by gale to hurricane force low-level
winds first from the north and then the south relative to the HKIA. The complementary use of radar
observations from a network of weather radars in Hong Kong helped to characterise those high wind
streaks generated as a result of Saola’s circulation and their relations to the mountains/peaks to the north
and south of the HKIA. The study enhanced understanding of terrain-induced windshear and microbursts
during the passages of tropical cyclones which was essential for the operations of landing/departing

aircraft at the HKIA.
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1 Introduction

Public distribution of data from the Ministry of Land, Infrastructure, Transport and Tourism’s (MLIT’s) parabolic dual-
polarization radars began in 2022, allowing private commercial use of radar data in Japan. Recently, we found that the
MLIT’s X-band parabolic dual-polarization radar data still contain signals that appear to be interference from other radars,
even though each radar’s internal signal processing includes interference suppression. When private parties use MLIT radar
data, these interference signals must be properly suppressed, but these parties cannot modify the radar’s internal signal
processing. The aim of this study was to suppress interference signals from the distributed radar data without modifying the
current radar’s internal signal processing.

2 Overview of the Signal Processing Flow

The MLIT’s parabolic dual-polarization radar data consist of plan position indicator (PPI) data for parameters such as
radar reflectivity ZH, differential reflectivity ZDR, and specific differential phase KDP, which are generated by the radar’s
internal signal processing from signals received by a parabolic antenna. The publicly available radar data are structured as
polar coordinates (range, azimuth, and elevation) after averaging for each sector (azimuth grid point) and do not include in-
phase and quadrature component (I/Q) data or data for each pulse.

The radar’s internal signal processing includes interference suppression processing, which detects interference when the
received signal amplitude increases instantaneously [1]. However, this method cannot detect interference that is continuously
mixed in the range or azimuth direction, leading to the possibility of residual interference in the distributed radar data. These
interference signals must be suppressed before the radar data can be used. We have developed a proprietary method to detect
and suppress interference signals only from the distributed radar data to prevent the degradation of the quality of our services
using radar data. An overview of the signal processing flow is shown in Figure 1.

Desired
.. \ MLIT's X-band parabolic
dual-polarization radar
Interference v
signal
1

The interference suppression processing
in the current radar systems cannot detect
/ the interference signals mixed across

’7 Radar’s internal |/ multiple ranges or sectors.
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J * PPI data for ZH, ZDR, and KDP
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TOSHIBA cloud
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i
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Figure 1: Overview of the signal processing flow

3 Analyzed Cases of Interference

We analyzed the interference signals mixed into the X-band parabolic dual-polarization radar data from the Kantou and
Funabashi stations at a date and time when the coverage of each radar station had mostly clear skies. Table 1 shows
information on the analyzed interference cases, and Figure 2 shows the locations of the Kantou and Funabashi stations.
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Table 1: Analyzed interference cases

Kantou Funabashi

(TJ'Q‘T? ofday | 2023/6/29 11:59-12:45 2023/6/29 9:23-9:31
Elevation 1.38-20.0 deg 1.6 and 2.6 deg
angles (all 12 observation angles) (two low angles)
Number of
PPIs 28 3

Various directions: strong inter-
Direction ference signals with ZH >40 dBZ Northeast

appeared especially in the northeast

T
4 KANTOU

4 FUNABASHI

g

North Latitude [deg.]

357

139 140 141
East Longitude [deg.]

Figure 2: Locations of the Kantou and Funabashi stations

The interference signals were continuously mixed in the range direction at different azimuth angles (sectors) depending on
the time and were distributed in a linear or fan shape on the PPIs. The characteristics of the radar reflectivity ZH and the
differential reflectivity ZDR showed that these interferences can be roughly classified into three groups: (1) the interferences
cover more than five sectors, the maximum ZH value is more than 30 dBZ, and the maximum ZDR value is more than 10
dB; (2) the characteristics of the interference coverage and the maximum ZH value are similar to those of group 1, except
that the ZDR is mainly negative and the minimum ZDR value is less than -10 dB; and (3) the interferences cover up to five
sectors, ZH is mainly less than 30 dBZ, and ZDR is mainly +5 dB or invalid. Table 2 summarizes the characteristics of these
three groups, and Figure 3 shows examples of PPIs for ZH and ZDR in each interference group. The areas where the
interference signals are mixed are surrounded by red dashed lines.

Table 2: Characteristics of the three interference groups

Group 1 Group 2 Group 3
+ Interference signals cover more than 5 sectors INERRence sidale; couer
ZH |, Maximum value is >30 dBZ 1105 Seclons
-Mainly <30 dBZ
+ Mainly positive values | -+ Mainly negative values
ZDR [ - Maximum value is + Minimum value is +Mainly £5 dB or invalid
>10dB <-10dB

Group 1 Group 2 Group 3

~

U o R e o
[

Figure 3: Examples of PPIs for ZH and ZDR in each interference group
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4 Results

The actual radar data from the Kantou and Funabashi stations were subjected to interference suppression processing using
our proprietary method. The results confirmed that the interference signals were suppressed by the proprietary method in a
total of 31 cases that included all 3 groups. Figure 4 shows examples of the PPIs for ZH before and after the interference
suppression processing. As shown in Figure 4, the interference signals surrounded by the red dashed line in the ZH PPIs
before interference suppression processing (top row) were suppressed in the PPIs after interference suppression processing
(bottom row).

Y S Y S I T

Kantou 2023/6/29 12:18 Kantou 2023/6/29 12:14 Kantou 2023/6/29 12:35 Kantou 2023/6/29 12:43 Funabashi 2023/8/29 9:23 Kantou 2023/6/29 12:08
elevation angle = 7.89 deg elevation angle = 2.40 deg elevation angle = 1.38 deg elevation angle = 9.69 deg elevation angle = 1.60 deg elevation angle = 7.89 deg
- ® © ®

"

interference § °|
suppression

) e

Figure 4: Examples of ZH PPIs before and after interference suppression processing
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5  Conclusions
*  The MLIT’s X-band parabolic dual-polarization radar data contain interference signals from other radars.

* The interference signals were roughly classified into three groups based on the characteristics of the radar
reflectivity ZH and the differential reflectivity ZDR.

*  We confirmed that the interference signals were suppressed by our proprietary method in a total of 31 cases that
included all 3 groups.
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1 Introduction

Hail events pose significant threats to sectors such as agriculture, infrastructure, and insurance due to the potential for
severe damage. Accurate real-time detection of hail-affected areas and hail size estimation remains challenging.
Observational data collected by witnesses are often error-prone and limited, particularly in rural regions, while ground-based
stations suffer from sparse distribution, leading to under reporting of localized hail events. Various methods have been
developed over the years to estimate hailstone size, often using remote sensing data supplemented with numerical model
variables. Weather radars are the most used remote sensing tools, offering a good balance of geographic coverage, temporal
resolution, and signal intensity during hail events. However, radar characteristics like frequency band and polarization
significantly affect the applicability and accuracy of these methods. This study focuses on the use of single-polarization
radars, which, although more challenging to use than dual-polarization radars, are more widely available in countries like
Italy, where this research was conducted.

A prominent method in operational meteorology for estimating hail size is the Vertically Integrated Liquid (VIL) density,
introduced by Amburn et al. (1997). This method calculates the ratio between the equivalent liquid water content and the
echo top—the highest altitude at which radar echoes are observed. Generally, a VIL greater than 3.5g/m? correlates with hail
events of 2cm or larger. Forecasting centers often adjust these thresholds to match their specific instrument characteristics, as
seen in the practices of the National Weather Service. Another widely used metric is the Severe Hail Index (SHI), which
combines the vertical radar reflectivity profile with a simplified vertical temperature profile. SHI can be further refined into
the Maximum Estimated Size of Hail (MESH) using a power curve, originally proposed by Witt et al. (1998) and later
refined by Murillo and Homeyer (2019). MESH remains a critical tool in both research and operational forecasting. For
example, Schmid et al. (2023) utilized MESH to estimate hail damage to infrastructure, and the Bureau of Meteorology in
Australia employs it for thunderstorm warnings (Richter et al., 2007). However, these methods, typically applied to radar’s
Plan Position Indicator (PPI) data, face limitations when used with Constant Altitude Plan Position Indicator (CAPPI) data,
particularly with poor vertical coverage. Further research has integrated these indices with numerical model variables. For
instance, Billet et al. (1997) proposed a regression model that combines VIL with parameters like freezing level and mean
storm-relative inflow. However, the effectiveness of this approach in estimating hail diameter is limited, likely due to the
simplifications inherent in linear modeling. Other studies, such as those by Marcos et al. (2021) and Papavasileiou et al.
(2023), have relied solely on numerical model variables for hail size estimation. While these models provide useful
indications of atmospheric conditions conducive to hail, they often lack alignment with observed conditions, partly due to
inherent errors in the geographical and temporal positioning of storms. Recently, traditional methods have been increasingly
compared with artificial intelligence (Al) techniques. For example, Ackermann et al. (2023) employed a neural network to
estimate hail damage using insurance claim data. Wu et al. (2021) trained a neural network with satellite and reanalysis data
(ERAS), though the results showed limited performance. Similarly, Laviola et al. (2020) used brightness temperature data
from Microwave Humidity Sounder (MHS) sensors on polar-orbiting satellites. Despite promising results, this approach is
limited by the constraints of polar-orbiting satellite sensor availability.

This study advances the field by developing and validating a real-time hailstorm detection system that combines radar data
and numerical weather products with a Machine Learning (ML) algorithm. The results demonstrate the effectiveness of this
approach in accurately detecting hail-affected areas and estimating hail diameters up to 5cm, offering significant potential
for improving damage assessment and mitigation efforts.

2 Methodology

The proposed system integrates radar data with numerical weather model outputs into a machine learning algorithm to
estimate hail size, expressed in centimeters, over a grid with approximately 1km? geographic resolution. The following
sections describe the adopted model, and the strategies used for training and validation.

2.1 Mathematical Formulation
The ML model used is the kernel version of Support Vector Regression (SVR) with a Radial Basis Function (RBF) kernel.
SVR aims to find a function f(¥) = (W, ¢(X)) + b, where W is the weight vector, and b is a bias term, that approximates the
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input data X within a specified tolerance of error €. Here, ¢p(X) represents a non-linear transformation of the input data,
designed to linearize a non-linear problem. While this transformation function is typically unknown, the kernel function
K@%, %) =(¢p(%),p(x )) is used instead, measuring the similarity between two points ¥ and X . The RBF kernel is defined
as:

, L2
K#x)=el*>I,
The objective of SVR is to minimize the following loss function:

migl {% W1 + %Z?’zl {;}, subject to the constraint: y; = (@, (X)) + b + {;, Vi € {1, ..., N},
w,

where C is a regularization parameter, { denotes the errors in the predictions, and y; is the label associated with the feature
vector ¥;.

The SVR model was selected for its robustness in handling high-dimensional data and its efficacy in regression tasks. The
RBF kernel was chosen for its ability to capture complex, non-linear interactions among input features, which are critical for
accurate hail size estimation.

2.2 Hyperparameters and Optimization

Hyperparameters are critical in determining the performance of the machine learning model. For the SVR model, key
hyperparameters include the regularization parameter C, which controls the trade-off between minimizing training error and
model complexity, and the y parameter for the RBF kernel, which determines the influence of individual training points. To
optimize these hyperparameters, a grid search combined with Cross-Validation (CV) was employed. The training dataset
was divided into three groups based on the occurrence dates of hail events. For each combination of hyperparameters, three
iterations were performed, using two groups for training and one group for validation. The grid search explored the
following ranges:

X C:from 0.1 to 1000, on a logarithmic scale,
K  y:from 10 to 10", also on a logarithmic scale.
The optimal hyperparameters identified during the CV process were: C = 100 and y = 0.01.

2.3 Model Training

The feature-label pairs were split into two groups for model training and testing based on the occurrence dates of hail
events. Events from the first 20 days of each considered month were used for training, while the remaining events from the
21st day onward, was reserved for testing. Before model training, the features in the training set were standardized by
removing the mean and scaling them to unit variance. This standardization was then applied to the test dataset using the
transformation derived from the training data. After finalizing the model with the optimal hyperparameters, it was retrained
on the entire training set and subsequently evaluated on the test dataset to assess its performance.

3 Dataset

The ground truth dataset used for training the SVR model is a subset of the PRETEMP dataset (https://pretemp.it/) holding
hail reports across Italy from August 2022 to August 2023. Each report includes the geographic and temporal coordinates of
the event, along with the corresponding hailstone size. Additionally, non-hail areas were identified by extracting points with
low radar reflectivity near reported hail events. The dataset holds approximately 3000 hail events and 15000 non-hail events.

The SVR model was trained using both observational and model-derived features. Observational features include CAPPI
data, which provide vertical profiles of precipitation intensity from weather radars, and the day of the year to capture
seasonal variations. CAPPI data, derived from interpolations at fixed altitude levels from radar volumetric data, were
provided as open data by the Department of Civil Protection (DPC). These data cover altitudes ranging from 1000 to 8000m,
in 1000m increments, with a spatial resolution of 1km? across Italy.

Model-derived features were extracted from the Hypermeteo Forecasting System (HFS), a proprietary numerical weather
prediction model based on the WRF-ARW framework, coupled with the WRFDA data assimilation system in a 3DVar
configuration. These features include:

K  Freezing level height: indicates the altitude at which freezing occurs.
X  Height of -20°C isotherm: marks the upper boundary where hail formation is likely.

X Significant Hail Parameter (SHP): combines Convective Available Potential Energy (CAPE) and wind shear to
evaluate the atmosphere's potential to sustain hailstone growth.

K  Equilibrium Level: Represents the maximum growth altitude of a thunderstorm cell.
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Several preprocessing steps were undertaken to refine the dataset. Temporal and geographic coordinates of the PRETEMP
reports were adjusted by aligning them with the time and location of the maximum Vertical Maximum Intensity (VMI) data
recorded by the radar within a +£1h window and a Skm radius. Observational features were then extracted based on these
adjusted coordinates. For model-derived features, extreme values (minimum for the freezing level and maximum for other
variables) were considered within a +6h window and a 20km radius around the revised event coordinates, accounting for
potential spatial and temporal errors inherent in numerical models. CAPPI radar data were also vertically interpolated to fill
any gaps. The processed features were then coupled with the refined PRETEMP reports to train the SVR model.

4 Results

In the following sections, we present the results obtained during the model validation process, highlighting the strengths
and limitations of the proposed algorithm. Finally, we demonstrate the method's performance through various case studies.

4.1 Model Performance Evaluation and Statistical Validation

The test dataset, consisting of approximately 6000 events excluded from the CV process, was used to assess the
performance of the re-trained model with optimized hyperparameters. The evaluated metrics are presented in Table 1, while
Figure 1 compares the observed and predicted hail diameters during this test phase. The results indicate that the proposed
index effectively identifies hail with diameters ranging from 0 to Scm. However, detecting larger hail sizes remains
challenging. This difficulty is likely due to the technical limitations of C-band radars, which are not designed to detect
targets larger than a few centimeters, and the specific numerical weather features selected, which lack strong signals for
recognizing larger hail diameters.

Table 1: Evaluation metrics obtained from the CV process across approximately 6000 events.

Mean Absolute Error 0.20 cm
Mean square error 0.52 cm?
R? 0.76
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Figure 1: Trend of predicted hail diameter (x-axis) compared to actual diameter (y-axis) across approximately 6000 events.

The percentage of samples correctly or incorrectly classified during the prediction phase was analyzed using confusion
matrices calculated for thresholds of 2cm, 3cm, 4cm, and 4.5cm. The results, shown in Figure 2, demonstrate that the
model's recognition performance is good for small-diameter hail, but decreases as the hail diameter increases. This trend may
be attributed to the imbalance in the training dataset, which is heavily skewed towards cases of small-diameter hail, leading
the model to prioritize minimizing error for those cases.
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Figure 2: Confusion matrices calculated for thresholds of 2cm (a), 3cm (b), 4cm (c), and 4.5¢m (d).

To assess the statistical significance of the CV phase results, a permutation test was conducted. The null hypothesis
posited that the model could not exploit the statistical dependencies between features and ground truth, leading to random
performance. A significance level of 0.05 was used. In total, 300 random permutations of the data were generated, with the
ground truth values shuffled to break any feature dependencies. The p-value obtained from the test was 0.003, indicating that
the model’s performance is unlikely due to chance and that the null hypothesis cannot be accepted.

The model was subsequently re-trained on the full dataset. The residuals of this final model, assessed by the coefficient of
determination, yielded a value of 0.74. This value, being significantly greater than 0, confirms that the model performs
substantially better than a constant model predicting the average hail diameter.

4.2 Case Studies

To demonstrate the model's functionality, we selected a series of case studies to illustrate the algorithm's behavior during
documented hail events that were excluded from the ML model's training data. Figure 3a shows hail reported in the Po River
delta on July 21, 2023, around 23:00 UTC, while Figure 3b displays hail reported in the Abruzzo and Molise regions on July
4, 2024, around 13:30 UTC. In the latter case, the model accurately identified hail with a diameter of 1-2cm, but in the
former case, it underestimated the hail size, predicting a maximum diameter of 5cm instead of the observed 8cm.
Nevertheless, in both cases, the hail events were correctly located geographically.
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Figure 3: Estimation of hail dimensions on July 21, 2023, at 23:10UTC (a) and on July 4, 2023, at 13:30 UTC (b). PRETEMP
documented hail diameters of 8cm in Porto Tolle (Veneto), on July 21, at 23:10UTC and 23:20UTC, and 2cm in L’ Aquila (Abruzzo) and
lem in Capracotta (Molise) on July 4, 2023, at 13:20 UTC and 13:25 UTC.
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Figure 4 compares the maximum hail size estimated on July 12, 2024, with the reports from witnesses in the European
Severe Weather Database (ESWD). Again, the areas impacted by hail were accurately identified, although some
discrepancies were observed in the affected regions. Specifically, the model suggested a broader area of impact than what
was reported, possibly indicating false alarms. This overestimation could be attributed to the training process, where non-hail
samples were manually assigned based on regions with low reflectivity. Consequently, areas with higher reflectivity but no
actual hail were not included in the model, leading to potential overestimation of hail presence in those areas.

(a) (&)
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Figure 4: Maximum estimated hail size on July 12, 2024, compared to the reports in ESWD.

5 Conclusions

This study introduces an innovative approach for real-time hail detection and size estimation across Italy by integrating
radar data, model-derived atmospheric variables, and advanced machine learning techniques. Utilizing an SVR model,
trained on the aforementioned data and a set of validated hail events and non-hail observations, we have demonstrated the
system's efficacy in accurately estimating hail-affected areas and hailstone sizes. However, challenges persist, particularly in
detecting larger hailstones, due to the inherent limitations of radar systems and the imbalance in the training data.

Future research will focus on addressing these challenges by refining the feature selection process to better capture the
dynamics of larger hailstone formation. Additionally, expanding the dataset to include a more balanced representation of hail
events across various sizes and geographic regions will be essential for improving the model's capabilities.
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1  Background and purpose of the study

The BRIDGE project, launched in 2023 in Japan, is a research initiative within the broader BRIDGE program (BRIDGE
2023). Led by the Meteorological Research Institute, this project focuses on localized severe weather countermeasures,
building upon the successes of the previous "Public/Private R&D Investment Strategic Expansion Program (PRISM)" (PRISM
2021). Specifically, the project aims to significantly advance both the deep learning-based tornado vortex detection technology
and the railway safety operations enhanced by this technology, both of which were developed during the PRISM period, and
to expand their applications to benefit socicty at large.

The BRIDGE project has three primary objectives (Figure 1):

1. Enhanced Accuracy: Improve the accuracy of deep learning models for tornado vortex detection using data from the Japan
Meteorological Agency's airport weather radar system, building on previous research by the Meteorological Research
Institute.

2. Expanding Applications for Societal Benefit: Expand the technology's application beyond railway operations to benefit
various sectors by integrating GPS location data for real-time disaster prevention information delivery.

3. Collaborative Innovation: Promote industry-academia-government collaboration, including partnerships with startups, to
accelerate the practical application of the developed technologies and address societal challenges.

Promoting collaborative innovation, the BRIDGE project utilizes the strengths of research institutions, established
corporations, and agile startups. This collaborative approach ensures rapid development, deployment, and societal impact of
the enhanced tornado vortex detection technology. This initiative aims to create a real-time disaster prevention system that
enhances societal resilience by providing accurate warnings and targeted information. The project also contributes to academic
understanding of large-scale weather patterns and promotes collaboration for practical application of research findings.

2 Deep learning technique for detecting tornado vortex patterns using Doppler radar

A deep learning method for identifying tornado vortices using Doppler radar data (Figure 2) is introduced. By leveraging
Doppler radar's ability to analyze the radial component of wind speed, this technique effectively detects the unique velocity
patterns within a tornado. A convolutional neural network was trained on a vast dataset of Doppler radar images, learning to
differentiate between tornado and non-tornado patterns (Ishitsu et al. 2019, Kusunoki et al. 2022). The system rapidly
analyzes Doppler radar data to identify potential tornado signatures, calculate maximum wind speed and trajectory, and
enable the timely implementation of safety measures. This collaboratively developed technology underpins a real-time wind
gust detection system that enhances train safety along Japan's Sea of Japan coast (Figure 3) (Fujiwara and Suzuki 2021, East
Japan Railway Company 2020). Future research will focus on enhancing the deep learning models and expanding the
application of this technology to other sectors impacted by severe weather events.
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Figure 3: Flowchart illustrating the process of
detecting and monitoring tornadoes using radar
data and Al This process begins with "Doppler
radar observation” (not shown), which observes
the lower atmosphere within a 60 km radius at 30-
second intervals. This figure is a modified version
of Figure 5 from Kusunoki et al. (2024, in press),
rendered in English, and is based on the flowchart
presented in the JR [East press release
"Implementation of Train Operation Control
Using Al-based Wind gust detection Method" (East

-Disphv"fminal Operations Ofice  Japan Railway Company 2020).

Advancements in deep learning models for tornado vortex detection and efforts towards real-time disaster prevention
information dissemination are presented as part of the BRIDGE project. The research developed and evaluated three types of
deep learning models: Convolutional Neural Network (MobileNetV3) (Howard et al. 2019), Neural Architecture Search
(EfficientNetV2) (Tan and Le 2021), and Vision Transformer (SwinTransformerV2) (Liu et al. 2022).These models were
trained using a dataset of Doppler radar data obtained from the Japan Meteorological Agency's airport weather radar system.
The newly developed deep learning models demonstrated superior performance compared to the previously employed VGG
model (Simonyan and Zisserman 2015). Notably, EfficientNetV2 and SwinTransformerV2 surpassed VGG in terms of the
area under the precision-recall curve (Figure 4). Importantly, the MobileNetV3 model demonstrated efficient inference on
CPUs, enabling potential deployment on a wide range of devices, including edge devices and mobile platforms (Figure 5).
This efficiency on CPUs makes MobileNetV3 particularly suitable for deployment on edge devices and mobile platforms,
thereby facilitating wider accessibility to the tornado detection system and enabling rapid dissemination of critical information

to vulnerable populations.
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Alongside the deep learning model development, the project focused on disseminating real-time disaster prevention
information to enhance the safety of mobile entities. The project implemented a system that combines meteorological radar
data with the location information of mobile entities, providing customized alerts and guidance - for example, tailored for
display on tablets used in public transportation systems - directly to these entities via dedicated communication channels
(Figure 6). Expanding the focus beyond the railway domain represents a novel approach aimed at serving various mobile
entities and the general public. By utilizing GPS functionality, the system can deliver targeted and timely severe weather
information over a secure internet connection, thereby contributing to enhanced disaster prevention capabilities across different
sectors of society. The collaborative nature of the BRIDGE project, involving industry, academia, and startups, has enabled
the development and practical implementation of these advanced deep learning models and the real-time disaster prevention
information dissemination system.

4  Conclusion - future developments and expected effects

This chapter presents the expected benefits and future developments of the advanced deep learning models for tornado vortex
detection and the real-time disaster prevention information dissemination system developed as part of the BRIDGE project.
The project's key outcomes include the development of deep learning models that outperform traditional approaches in
accurately detecting tornado vortices from radar data, as well as the implementation of a system that integrates the detection
technology with GPS location data and applications for use on devices such as tablets.

4.1 Expanding Applications: From Railway Safety to Global Tornado Disaster Mitigation

In addition to the railway sector, the deep learning-based tornado detection technology developed in the BRIDGE project
has the potential to significantly contribute to improving the safety and business continuity of other critical infrastructure
domains in Japan, such as expressways, ports, as well as vital service providers like power and telecommunications companies.
By expanding the application of this technology beyond the initial railway focus, it can enhance the overall resilience of Japan's
important transportation and lifeline infrastructure. While initially focused on railway safety in Japan, the BRIDGE project's
deep learning-based tornado detection technology holds significant promise for mitigating tornado risks worldwide. This is
especially relevant for regions frequently facing tornado threats, such as the United States. There have also been numerous
reports of tornado occurrences in Europe in recent years, highlighting the relevance of this technology for the European context
(Antonescu et al. 2017, Miglietta et al. 2019). Additionally, Europe has well-developed high-speed rail networks, making this
technology potentially applicable for enhancing the safety of train operations in Europe.

By integrating location data from public transportation systems and critical infrastructure operators, the technology can
deliver targeted, real-time severe weather information directly to entities responsible for public safety and service continuity.
This capability stands to significantly enhance public safety and disaster preparedness, ultimately improving societal resilience
and recovery capacity against tornadoes on a global scale. It is important to note that the effectiveness of this technology is
inherently dependent on the capabilities of the underlying radar systems, including their performance and scanning frequency,
as well as the regional characteristics of tornadoes. Tornadoes exhibit diverse characteristics across different regions, such as
frequency, scale, structure, and conducive meteorological conditions. Adapting this technology to different radar systems,
particularly those utilized in Europe and the United States, will require careful consideration of these regional variations,
including disparities in radar capabilities and the unique tornado climatology of each region. Fine-tuning the deep learning
models to align with these factors, alongside potential further research and development, will be crucial to ensure optimal
performance and maximize its effectiveness in diverse geographical contexts.

4.2 Expected Academic Contributions

The expected academic insights from the deep learning-based tornado vortex detection technology developed as part of the
BRIDGE project are discussed. While the primary purpose of this technology is to provide real-time disaster prevention
information, it also has the potential to significantly contribute to the academic understanding of tornado phenomena.
Previously, understanding the occurrence and development mechanisms of tornadoes required detailed analysis of individual
tornado cases. However, conducting such analysis on large-scale data has been challenging due to time and resource constraints.
The deep learning-based detection technology can automatically and rapidly extract tornado vortex patterns from massive
amounts of radar data with high precision. This capability is expected to enable efficient investigation of tornado occurrence
characteristics, including frequency, geographical distribution, seasonality, development processes, and relationships with
environmental conditions. Applying this technology to radar data globally is anticipated to yield significant advances in
academic tornado research, including a more comprehensive understanding of global tornado climatology, improved
monitoring of tornado occurrence and development, and the development of more accurate forecast models. The introduction
of a machine learning approach also raises expectations for new discoveries and awareness beyond existing knowledge. Data-
driven analytical techniques may reveal overlooked features and relationships, paving the way for a more comprehensive
understanding of the climatological reality of tornado phenomena globally. This approach is expected to have a major scientific
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impact by enabling detailed understanding of tornado occurrence mechanisms, contributing to advancements in meteorological
science.
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Abstract

The Royal Netherlands Meteorological Institute (KNMI) operates two identical METEOR 735CDP10 Magnetron based C-
band Dual polarization weather radars from Leonardo together with software Rainbow for processing of operational data.
Research and development on radar data processing on the other hand is often conducted using open-source software, such as
BALTRAD, Py-ART, LROSE, and wradlib for its flexibility and possibility to add new functions. A link between Rainbow
and open-source radar softwareis created, that allows for quickimplementation of new algorithmsin such software. The work
presented here describes the implementation of a dual-pol clutter correction algorithm, available in wradlib, into the operational
cloud-based data processing chain of KNMI.

1 Introduction

The Royal Netherlands Meteorological Institute (KNMI) operates two identical METEOR 735CDP 10 Magnetron based C-
band Dual polarization weather radars from Leonardo, located in Herwijnen (5.1379E 51.8370N, WSG-84) and at a naval base
in Den Helder (4.78997E 52.9533N, WSG-84). After elementary signal processing and data reduction on-site at the radar
locations [ 1], data is aggregated in a central Linux-based server at Amazon Web Services (AWS) at which proprietary software
Rainbow is running for further processing and compositing into data products. A clutter algorithm using single- and dual-pol
moments [2] is available in Python-based open-source software wradlib [3]. Implementation of this algorithm into the
operational data processing would need to be done before pseudo-CAPPI generation, and thus require adaptation of Rainbow
by the manufacturer, despite the algorithm being available in wradlib. Instead, a future-proof solution has been devised by
creating a connection between Rainbow and open-source software. In this way, intermediate steps in the processing using
open-source software can be achieved, allowing for quick implementation of new developments into the operational processing
chain.

2 Measurement chain

A visual representation of the data chain at KNMI is displayed in figure 1. The digitalized signals are sent to a signal
processor at the radar location, where data reduction and moment generation takes place \ref{Beekhuis2018}. Subsequently
this moment data is sent to an Amazon Elastic Compute Cloud (EC2) in Amazon Web Services (AWS), where an instance of
Rainbow for each radar receives and stores the data on an Elastic File System (EFS). These servers are called the Data
Receivers.

Radar Den Helder | [ Amazon Web Services

External radar data

—_—

Data Receiver
Den Helder

Signal Processor

- * Filtering

* Post processin

Signal Processor i i . Prodgctcesnsclarftinn Data-based
g Herwijnen g f Monitoring
* Format conversion

Figure 1: Schematic representation of the measurement data chain at KNMI. Moments are generated in the signal
processor. Data is sent to the specific Data Receiver EC2 instance at AWS, which stores the data in Rainbow format on the
EFS. Rainbow running on the Product Generator EC?2 instance picks up the radar data and creates products and
composites. The open-source software is implemented within the Rainbow Product Generator.

Radar Herwijnen
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Figure 2: Implementation of a user-defined function that converts Rainbow data into ODIM-HDF format, applies the
wradlib open-source dual-pol clutter correction algorithm and returns the filtered data to Rainbow.

Data from neighbouring countries is also sent to the same EFS. The Product Generator Rainbow instance aggregates data
of all these radars from the EFS, and processes them into products and composites, after which they are converted into HDF -
format and distributed, see figure \ref{Fig:ProductGenerator}. The setup of these EC2 servers together with Rainbow
configuration is entirely scripted, which facilitates easy deployment of a new server. The configuration is stored in a Git
repository ensuring strict version control. Changes to these servers are implemented in a controlled manner by creating a
branch of this repository, after which an identical version of these servers is generated for testing purposes.

An infinite number of test branches can be generated concurrently. Before integration in the production environment, all
changes are first tested in an acceptation environment, which is identical. To ensure continuity of radar production, a strict
separation is made between the production servers and the test and acceptation servers. A Continuous Integration / Continuous
Development (CI/CD) pipeline in Gitlab aids in this process by having a visual representation of the standardized procedure
of the roll-out of new servers. New production servers are deployed one by one, in which old servers are only stopped after
the new ones are rolled out in order to minimize loss of data availability. A new Product Generator is deployed without any
interruption, and deployment of a Data Receiver server leads to the interruption of one 5-minute cycle of each respective radar
only.

3 Connection of Rainbow with open-source software

A user-defined function is created in Rainbow that calls an external Python script. This script converts Rainbow data into
ODIM-HDF format and loads the open-source software. After modification using the open-source software, the data is
converted back into Rainbow format and reloaded into Rainbow, and further processing on the modified data takes place. This
enables implementation of any open-source software while keeping Rainbow for radar configuration, product generation, data
process control and logging.

Figure 3: PPI of the lowest elevation (0.3 $\deg$) of radar Den Helder without (left) and with (right) the dual-pol clutter
filter applied. The sea clutter and reflections from a wind park in front of the coast is filtered, while the showers are kept in
the image.
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As an example, we use a filtering algorithm [2] available in wradlib. Figure 3 shows an example of the application of the
wradlib dual-pol clutter filter. The left image shows a Plan Position Indicator (PPI) of the lowest elevation (0.3° above the
horizon) of radar Den Helder, after Rainbow DFT filtering and occultation correction. The right image shows the same PPI
after subsequent application of the wradlib open-source dual-pol clutter filter, reloaded into the Rainbow processing chain.
The wradlib clutter filter is able to eliminate residual sea clutter and reflections from a wind park on the North Sea, while
leaving the showers in the data unaffected. The additional time spent on the conversion to ODIM-HDF, filtering, and
converting back of all elevations is 20 seconds.
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Sliding Windows
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1 Introduction

In theory, defining echo top height is straightforward: it is the highest altitude where radar reflectivity exceeds a given threshold, say
10 or 20 dBZ. Echo top height provides information on the dynamics of precipitation phenomena, for example in distinguishing strong
convection. Real-time echo top products are valuable in aviation weather service, for example.

As to practical computation, the geometry of radar measurements brings in a challenge. Typical operational scanning routines
consist of azimuthal sweeps at a relatively small number of elevation angles. As illustrated in Fig. 1, by traversing a single radar beam
it is basically easy to track the bin(s) where the reflectivity decreases and passes the reflectivity threshold - but for practical horizontal
image products those bins are too sparsely distributed. This means that heuristics like interpolation and extrapolation are needed for
approximating echo tops in radar image area. Lakshmanan et al. (2013) proposed interpolation between radar beams, using nominal
value -14 dBZ for replacing missing echoes on higher beams. In the applied Next Generation Weather Radar (NEXRAD) environment
the echo top threshold was 18 dBZ. Motivations for choosing Z or dBZ for linear interpolation were also discussed.

In radar range, there are also vertical columns of bins where the threshold is exceeded in the highest bin or echo remains under
the threshold in all the bins. In these cases, approximating echo top height involves more uncertainty. To each computed echo top
height we propose assessing a certainty value — a heuristic measure between zero and one — that can also be identified as a quality
index (Holleman et al., 2006). Then, the values of higher quality can be used for improving values of lower quality. As illustrated in
the paper, this can be done with single-radar data and also in the compositing stage.

dBZ PseudoRHI [DBZH] fivih 150deg 2024/08/10 06:00
nodata 12000
undetect
noise 10000

g
insects =} 8000
0 drizzle 5
8 weak i
16 rain = on0o
24 moderate %
intensive g 4000
40! hail =
=
60 2000

Range [-250:250 km]

Figure 1:  Perceiving echo top height — visually or computationally — is difficult due to the limited number of elevation angles. At
right, pseudo RHI product computed from volume data on a line shown at left (dBZ product).

2 Proposed method
2.1 Definitions

The proposed algoritm detects highest bins where the threshold is exceeded and interpolates up or down, towards the threshold value.
The algorithm, implemented in the latest versions of Rack software (Peura, 2012), consists of the following nesting loops. Let us
denote measured reflectivity with Z. The main parameter for echo top is threshold reflectivity Zy,. The outermost loop traverses the
volume radially; the applied coordinate 7 is the distance from the radar along the ground. The next loop is azimuthal, with coordinate
a € [0,360°[. The innermost loop inspects reflectivities Z; in the vertical column of bins ¢ = 1, ..., N above each ground point
(7, ). The following measurement cases are distinguished. WELL-DEFINED: the highest bin with Z; > Z;},,. has a weak echo in the
above bin: Z; 11 < Zipy. SPAN-LIMITED: the highest bin with Z; > Zi},, has only “dry bins” above, that is, bins without echoes
exceeding the detection threshold. MIN-HEIGHT-LIMITED: the highest bin with Z; > Ziy,, is on the highest beam measured. MAX-
HEIGHT-LIMITED: the column contains only weak precipitation, Z; < Zin,Ve. CLEAR: no echo. The names refer to conditions
under which echo top height can be approximated, illustrated in Fig. 2.
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Figure 2: Approximating echo top in different geometrical cases.

At this point, let us define reflectivity gradient in a vertical column of bins as

AZ  Z;— Z

=—— =0 1
Ah  hj—h;’ M

d

where Z; and Z; are reflectivities (dB) in bins ¢ and j at heights h; and h;, respectively. Each gradient Z, defines a line in (%, Z)
space:

2.2 Approximating echo top height

Among the cases listed above, WELL-DEFINED is the most straightforward one: h for given theshold Zyy,, is obtained directly with
interpolation between (h4, Z;) and (h;, Z;). Obviously, it is also gives the most accurate (certain) approximation. Almost as reliable
is SPAN-LIMITED case, substituting undetected echo with Z; = Zq,.,. This fixed value should be compatible with the applied radar
system!.

In MIN-HEIGHT-LIMITED and MAX-HEIGHT-LIMITED cases, there is only one measurement (h;, Z;). Basically, given any
measurement, echo top height h can be approximated from (2) using Z = Ziy,,. For obtaining a virtual gradient for such interpolation,
we define reference “point” (hyef, Zyer) substituting (hj;, Z;) in (1). We propose using relatively large height, say Ao = 30 km,
and relatively small reflectivity, say Z..f = —50 dBZ. So, like Zq,y above, the reference point imitates reflectivity, toward which
observed reflectivities are assumed to approach with height. Hence, observations in MIN-HEIGHT-LIMITED and MAX-HEIGHT-
LIMITED cases are interpolated (extrapolated) upwards or downwards, respectively, using the reference point. It must be noted that
this is only a heuristic providing an initial approximation. Default dBZ gradients with (2) could be used just as well.

Figure 3:  Computing echo top (20dBZ) product for the same input volume as in Fig. 1. From left to right: measurement cases
(CLASS) as defined in Fig. 2, reflectivity gradient (dBZ/km), quality index (QIND) based on CLASS, and the actual product: approx-
imated echo top height.

2.3 Using sliding windows for spreading gradient information

Practically, areas of high gradient quality — where WELL-DEFINED and SPAN-LIMITED interpolation can be done — co-exist with
areas of lower quality. This problem is illustrated also in Fig. 3, where higher-quality areas (appearing green and orange in CLASS
panel) populate less than half of the precipitation area.

As a partial solution, we propose propagating high-quality gradient measurements to (nearby) areas of lower quality. More specif-
ically, we propose applying averaging window operator that applies quality information in weighting the averages. First, the quality
information is generated by using “a priori” quality indices for each class, preferably as a descending series like WELL-DEFINED:
1.0, SPAN-LIMITED: 0.8, MIN-HEIGHT-LIMITED: 0.6, and MAX-HEIGHT-LIMITED: 0.4. In addition, for MIN-HEIGHT-LIMITED

!Lakshmanan et al. (2013) proposed using Z 4,y = —14 dBZ while in these experiments we have used Zq4,,, = —32 dBZ.
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and MAX-HEIGHT-LIMITED, which are based on a single measurement Z;, a (fuzzy) function decreasing with distance |Z; — Ziy, |
is applied as additional decay.

Window operations imply nesting loop in programming, easily increasing computation time which may be an issue in operational
environments. Fortunately, window averaging is one of the operations that can be carried out in a pipeline fashion using sliding
windows that update sums continuously (Peura, 2016). That is, at each step the applied sums are updated by adding values on the
leading side of the window and subtracting values on the trailing side as illustrated in Fig. 4. When using a window of M x N pixels,
this technique speeds up computation by a factor of max (M, N) which is of practical value. An example of weighted smoothing of
dBZ gradients is shown in Fig. 5.

<

-

Computation schema Input Output

Figure 4: Illustration of the path of a sliding window €2 in image f (7, j). Applied statistics — like average in our case — are updated
continuously by adding and removing values on leading < and trailing © side, respectively.

dBZ/km Height [km]

Figure 5: Gradient (dBZ/km) and quality fields (two center panels) of Fig. 3 after 25.5 km x51° window smoothing.

3 Experiments

3.1 Radar pair comparison

A natural method of assessing performance of an echo top algorithm is visual inspection. Especially, one should look for abrupt steps
and rings in the product. We tested different sizes for the averaging window. Some results are shown in Fig. 6. For this test, to
highlight the effect of averaging, we chose reference point (50 km, -40 dBZ) with poor performance, appearing as rings in the raw
image. Within this set, the largest window provided the best result.

ETOP 202 (-40

BGHT/palette():
T

Figure 6: Testing different window sizes in weighted averaging of dBZ gradients: no averaging, 4500mx9°, 10500mx21°, and
25000mx51°.
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3.2 Compositing

Radar geometry — sparsity of elevation angles and Earth curvature — is a problem also for echo top products. Creating radar im-
age composites (mosaics) improves spatial accuracy. We tested compositing of echo top products using four composition methods:
average, maximum, weighted average and maximum-quality (Peura et al. (2006)). Inputs are shown in Fig. 7 and results in Fig. 8.

Height [km]
nodata

! undetect

Quality

Figure 7: Echo top (20 dBZ) inputs for a composite. FMI radars fiika, fikor, fivan on 2017/08/12 16:00 UTC.

4 Discussion

We introduced methods for extending echo top computation from well-defined (two-beam) interpolation areas towards more uncertain
areas. The problems originating from radar geometry — beams too low near the radar and too high far from the radar as well as the
sparsity of beams — were admitted and handled using quality indices, allowing further processing to make decisions on contribution of
each bin (pixel). In locations where a single-beam measurement of reflectivity could be used only, initial echo top approximation was
obtained by extrapolation towards a “dry” reference point aloft. As a further heuristic, the quality was set to decrease with extrapolated
distance. Second, high-quality gradients were propagated to areas of lower quality. Third, the quality was used in compositing methods
(Quality-weighted average and Maximum quality), again allowing measurements of high quality override those of low quality.

In this study, we did not consider winter conditions. In northern climate, winter time precipitation initiates low, often around 2 km
height. Due to radar geometry, most of the precipitation is detected then by the lowest sweep only, hence (well-defined) gradients (1)
cannot be applied. On the other hand, as precipitation remains low, the echo top products have less overall importance.

More research is needed in assessing optimal values for applied parameters, for example in dynamically determining reflectivity
gradients (or reference points) as well as parameters for weighted smoothing (initial quality indices and window dimensions).
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Figure 8: Echo top composite images (left panels) and resulting quality fields (right) when using conventional and quality-supported
compositing methods. Conventional Average blurs information. A cautious client probably prefers Maximum echo top, for example
in flight routing. Climatological applications might appreciate Quality-weighted average or Maximum-quality product, as they should
be statistically more accurate than Average and Maximum.
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1 Introduction

Tornadoes frequently occur in Japan. Japan Meteorological Agency (JMA) lists them in the database with environmental
situation or synoptic disturbances. The kinds of convective system yielding tornadoes, however, have not been classified in
detail. Niino et al. (1997) said that most of tornadoes in Japan are non-supercell type. Hazardous wind watch is issued from
JMA based on the indices for supercell. We expect to make the watch more accurate if we introduce the indices for the other
non-supercell systems. We have not understood which systems are major source of tornado at this time. Therefore, we need to
investigate the tornado climatology in Japan, especially the viewpoint of the types of convective systems as classified by Agee
(2014) in United States. We found 6 types of parent convective system even only in Kochi Prefecture (Fujii and Sassa 2022).
The present study aims to classify the parent convective systems of tornadoes in Japan based on the shape of radar reflectivity.
After we establish the tornado climatology in Japan, we can investigate the detailed environmental situations for each
convective system and then we can propose indices suitable for each convective system. Moreover, the risk of tornado damage
will be evaluated easily based on the types of convective systems.

2 Radar analysis

The tornado events those located within the observation range of JMA radars are picked up from the tornado database.
Analysis periods are 12 years from 2013 to 2024. We draw reflective intensity and Doppler velocity images by using Draft,
drawing tool developed by Meteorological Research Institute of JIMA. The kinds of convective system are classified based on
the shape and size of strong echo region more than 40dBZ in reflectivity as shown in Fig. 1. The vortices in the convective
system are also detected as a caplet of maximum and minimum Doppler velocities. Then we evaluate the characteristics of the
vortices, e.g., diameter, velocity difference, vorticity and moving velocity.

ITOK 2018 09/28 16:55:17JST PPl EL = 1.8 deg
Reflectivity (dBZ) Doppler Velocity (m/s)

127.70 127.80 127.90 128.00 128.10 127.70 127.80 127.90 128.00 128.10
Longitude(E) (10 km | Longitude(E) (10 km |

Figure 1: Examples of reflective intensity (left) and Doppler velocity (right) images. The red square indicates a
convection system, and the red circle indicates a vortex.

3 Dataset

The analyzed events are 116. There are 464 events associated with tornado in the tornado database for 12 years.
Unfortunately, the other events occur outside of the observation range of JMA radars. Some events are also removed from the
analysis because of complicated change in strong echo region.

4 Results

We are classified to 6 kinds of convective system as shown in Fig.2 from 116 events. Isolated cumulonimbus has a relatively
small scale and strong echo regions in surrounding area are clearly apart from it as shown in Fig 2a. We found 44 isolated
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cumulonimbi. 13 supercells are identified. They are also isolated from surrounding area, but their size is quite larger than that
of the isolated cumulonimbus as shown in Fig 2b. Horizontal scale of Fig.2b is twice of that of Fig.2a. Supercell also has a
large-scale vortex called as mesocyclone. A mesocyclone is defined as a vortex of more than 2 km in diameter and a vorticity
of 0.01/s or more. Cloud cluster is composed of many convective cells but their cells cannot be distinguished with each other
as shown in Fig. 2¢. Then, Strong echo region of it is extended to relatively large area. 53 cloud clusters are found. It is major
convective system yielding tornadoes in Japan. Squall line is a kind of linear rain band which moves fast at a large angle for
its trend direction. The squall line in Fig. 2d moves southeast. There are 4 events as squall line. Figure 2e shows local front
that is also a kind of linear rain band composed of small-scale cells and it moves very slowly. Figure 2f shows inner rainband
of typhoon is the case the vortex locates in the eye wall of typhoon. Typhoon sometimes causes tornadoes. The most of such
tornadoes occur in the supercell in the outer rainband. Therefore, inner rainband case is very rare.
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Figure 3 shows the distribution of parent convective systems. The isolated cumulonimbus occurs on the sea and coastal area.
The cloud cluster occurs south coast of Japan faced on the Pacific Ocean, Tohoku district faced on the Sea of Japan and inland
area. Figure 4 shows the occurrence number of convective systems per month. The isolated cumulonimbus occurs from
summer to autumn, and cloud clusters occur throughout the year except January and February. They frequently occur especially
from early summer to autumn. Figure 5 shows the distribution of the occurrence season of convective systems. Events tended
to occur on the Pacific Ocean side or inland area during the warm season. In the Sea of Japan side area, some events occur
during the cold season but also do even in warn season. Figure 6 shows the occurrence time of convection systems. The isolated
cumulonimbii tend to occur in the late afternoon and cloud clusters occur in the morning and early afternoon, especially.
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@ Supercell

@ Cloud cluster

o Squall line

o Local front

® The inner rainband of
typhoon

300 km
Figure 3: The distribution of convective systems.
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Figure 6: The time of occurrence of convection systems.

Figure 7 shows the moving direction of parent convective systems. Some systems change their echo patterns, then we
decided the moving direction by tracking the vortices. Most of systems move east or landfall from the sea. The major moving
direction is affected by westerly wind but landfall cases may show that the source of parent convective system is moist warm
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air on the sea. As the vortex landfall, its velocity difference tends to decrease, and the vortex diameter tends to shrink as shown
in Fig.8. Such facts may be caused by the friction of lands. Figure 9 shows the scatter plots between the maximum wind
velocity of vortices and vortex diameter. The maximum wind speed is obtained by the sum of the tangential velocity of vortex
and its moving velocity. Blue colored symbols show the vortices in supercell. Most of them are mesocyclone. Because of the
spatial resolution of JMA operational radar, some mesocyclones cause damage in this figure. But actual damages are caused
by tornadoes buried in mesocyclones. The scatter plots do not show any trends. But, we can see that the vortices of less than
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22 m/s do not cause any damages. It may show the limit of marginal tornado (Wurman and Koshiba 2013).
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Figure 7: The moving direction of parent convective systen.
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Figure 8: The vortex velocity difference and vortex diameter after landfall. Events with damage are
colored and Events without damage are shaded.
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Figure 9: The scatter plots between maximum wind speed and vortex diameter. Vortices caused
damage are shown by filled colored symbols and events without damage are shown by shaded
symbols. The red line shows 22m/s which mean the lower limit of the velocity yielding damage.

5 Conclusions

Convective systems yielding tornadoes in Japan could be classified into six types. Major events are cloud clusters and the
isolated cumulonimbus. Cloud clusters tend to occur on south coast of Japan faced on the Pacific Ocean, Tohoku district faced
on the Sea of Japan and inland area, throughout the year, and in the morning and early afternoon. The isolated cumulonimbi
occur on the sea and coastal area in late afternoon from summer to autumn. Most of convective systems tend to move east or
landfall from the sea. When the vortices landfall, the velocity difference of them tends to decrease, and their diameter tends to
shrink. The vortices of less than 22 m/s in maximum wind velocity are found not to cause any damage.

Further detailed classification and characterization through analysis using high-resolution radar networks (e.g., XRAIN) and
environmental field analysis of each event will be the subject of future work.
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1 Introduction

Due to recent climate change, water disasters caused by localized torrential rains and tornadoes have become a societal
problem, and there is high anticipation of more accurate weather radar data for predicting these events. However, weather
radar observations are sometimes missing data due to obstructions such as surrounding mountains and interference, which are
problematic because they can cause the signs of dangerous weather phenomena such as heavy rainfall to be missed.

Currently, missing data are interpolated using observation data from weather radars installed at different locations or using
data from another elevation angle that are not obstructed [1],[2]. However, when interpolating far from the interpolating
weather radar, the quality of the interpolated data deteriorates due to the deterioration of resolution caused by beam width
expansion and misalignment of the interpolated data. In Japan, the maximum observational range of C-band weather radar is
300 km. At this maximum range, the beamwidth expands to 3.1 km, and because the interpolation radius is set to this
beamwidth, the spatial representativeness at the edge of the observation range is reduced.

Another approach is to utilize machine learning technologies such as generative adversarial networks (GANs) and
convolutional neural networks (CNNs) to fill in the missing data [3],[4]. In [4], interpolation of missing data by a CNN and
conditional GAN (CGAN) were quantitatively tested, and it was shown that while the CGAN could produce realistic output,
the accuracy of interpolation was inferior to that of the CNN. Whether a CNN or CGAN is more suitable depends on the task.
For example, when applied to scenarios such as predicting localized and extreme weather conditions, like guerrilla rainstorms,
the realistic fake data generated by a CGAN may degrade the accuracy of the prediction. In this report, we examine a method
of interpolating missing data using a U-net based model that uses precipitation data from the previous period and other
elevation data as input for learning precipitation motion and upper airspace information for regions of missing data, with the
goal of improving prediction accuracy for local weather phenomena.

2 Dataset

Missing weather radar data has a variety of causes. For example, radio waves may be blocked by obstructions such as
mountains or tall buildings, or from undesired signals caused by interference with other systems, clutter, or anomalous
propagation. The former type of missing data tends to occur regularly depending on the terrain, while the latter occurs
irregularly depending on the weather and surrounding conditions. We propose a method for interpolating the former type of
regularly occurring missing data using machine learning. Japanese weather radar systems deliver quality control (QC)
information consisting of 8 bits along with the observed weather data. In the QC information, 3 bits are allocated for indicating
missing data, consisting of the masked region, the invalid value region such as due to shielding, clutter, and interference, and
the radio dissipation region. By utilizing the QC information, it is possible to determine the location and size of regularly
missing data caused by masked regions and shielding.

2.1 Radar data information

The plan position indicator (PPI) data used in this report 138.5°F 139°F 139.5°E 140°E 140.5°E
are from two C-band parabolic weather radars installed by
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Figure 1: Radar locations.
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2.2

Although training datasets with and without missing data are needed in order to generate the interpolation model, it is
impossible to obtain data without missing data in regions where the data are actually missed. To address this, we developed a
method for creating a training dataset by selectively extracting segments from other azimuthal PPI data that were intact and
intentionally removing a portion of the extracted segments based on the size of the missing QC information (Figure 2). Figure
3 shows an example of a basic training dataset. As shown in Figure 3, we constructed the training dataset by trimming the
original data to a new size of approximately 120 km (range: Mg, g¢) by 90° (azimuth: Mg iy en)-

Method for generating datasets

Trimming data from the
complete region

Azimuth
-

avimupy, | Missing data
>
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EEERARRREE]
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‘Weathre radar data
(e.g. precipitation)
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/

Figure 2: Example of basic training dataset.
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(b) Input data

100 120

(a) Ground truth data

Figure 3: Example of basic training dataset.

In this study, we test two other types of datasets as shown in Figures 4 and 5. The dataset shown in Figure 4 is an extension
of that shown in Figure 3, incorporating observational data from times preceding performing the interpolation processing. In
the example shown in Figure 4, data observed 8 min and 16 min before the ground truth data collection time are added as
additional inputs. This dataset aims to improve interpolation accuracy by learning the movement of precipitation. The dataset
presented in Figure 5 is an extension of that in Figure 3, with the addition of upper elevation angle data. Observations at upper
elevation angle through volume scanning are less affected by shielding, making it easier to obtain complete observation data.
Although there are differences in observation altitude and timing, using this as supplementary information from the upper
atmosphere is expected to improve interpolation accuracy.

2023/06/28 19:38
-

2023/06/28 19:31

2023/06/28 19:23
T 4

2000 40—

o m 0

P T T )

@ w8 W

(c) Input data
(8 minutes before (b))

(d) Input data
(16 minutes before (b))

(c) Input data

( Elevation #2)

Figure 4: Example of training dataset with previous period Figure 5: Example of training dataset with other elevation.

3 Methodology

In this report, U-net is employed to train the interpolation model. U-net is a CNN architecture originally designed for
biomedical image segmentation. Its effectiveness in precise localization and use of context makes it well-suited for tasks such
as interpolating missing data in weather radar data. The U-net architecture comprises two main parts: an encoder path for
capturing context and a decoder path that enables precise localization. The encoder consists of repeated application of
convolutions, each followed by a rectified linear unit and a max pooling operation for downsampling. Conversely, the decoder
path consists of upsampling of the feature map followed by a transpose convolution. A key feature of U-net is skip connections

58

ERAD 2024



ERAD 2024 — 12" EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY

that provide the decoder with context information from the encoder. These connections help in recovering full spatial resolution
at the network output, which is vital for detailed interpolation.

Input data ﬂ Ground truth data
I

- Conv nX48X3 - Conv 48%48x3 Conv 144X96X3
J ReLU ReLU ReLU
‘ Conv 48X48x3 ConvT 48X48X3 ConvT 96X96X3
Rel.IT

LL ﬁ - M’Tange X Mazimutn Maxpool 2x2

X Myrange X Magimutn Conv 48X48X3 Conv96X96x3 Bl Conv (96+n)x64x3
ReLU ReLU ReLU
Maxpool 2x2 Conv 96Xx96x3 Conv 64X32x3
ReLU ReLU
ConvT 96X96X3 ConvT 32X1X3

Figure 6: U-net training structure for interpolating weather radar data.

Figure 6 shows the U-net training structure of this report, where n indicates the number of input channels. The interpolation
model is pre-trained using the mean absolute error (MAE) loss as follows,

L= Ex,y[ly —G(0)]] M

where y is the true value and G (x) is the U-net output value. This training is applied to a subset of PPI data that has been
trimmed using the method shown in Section 2.2. We utilized the PPI data from Mt. Akagi radar on 2023/6/28 and 2023/7/3,

when localized heavy rainfall occurred due to unstable atmospheric conditions.
During operation, the trained U-net model is used to interpolate the data missing by the following steps.

1.  Trimming data

Trim off some of the PPI data according to the QC information including the missing regions so that the size and missing

positions after trimming match the state during training.
2. Interpolation
Input the trimmed data of Step 1 into the pre-trained U-net model to generate data with the missing regions filled.

3. Replacing interpolated data

Interpolate the missing regions by replacing the data in the missing regions with the output from Step 2, based on the QC

information.

4 PERFORMANCE EVALUATION

4.1 Case of 7° width of missing data

Figure 7 shows an example of interpolation results assuming a 7° width of missing data occurring from an azimuth of
approximately 90° to 97°. Figure 7(a), (b), and (c) respectively represent the missing data, the ground truth, and an
example of interpolation using the nearest neighbor method with PPI data from the Mt. Takasuzu radar installed at a
different site than the trained data. Figure 7(d) to (f) show the results of interpolation using the U-net model, with (d) to
(f) using the inputs shown in Figures 3 to 5, respectively.

The localized rainfall cells enclosed by the black circles in Figure 7(b) have disappeared due to missing data, as shown
in Figure 7(a). It is suspected that linear interpolation using data around the missing regions may be insufficient for
recovering these. However, Figure 7(c) to (f) demonstrate an almost successful reconstruction of the localized rainfall
cells. More specifically, although Figure 7(c) shows high reproducibility for the middle and right cells, the left cell appears
to have collapsed. This issue is likely due to the left cell being the farthest from the Mt. Takasuzu radar, resulting in
degraded spatial representativeness and an inability to accurately reproduce local phenomena. Figure 7(d) reasonably
reproduces the shape of the cells but tends to underestimate their overall intensity. Figure 7(e) fails to reproduce the right
cell, indicating that the advantages of using time-series input have not been confirmed. This failure may be attributed to
differences in the movement of the rainfall cells between training and validation stages. To address this, it is necessary to
either increase the size of the dataset to cover a wider range of motions or incorporate additional features such as advection
vectors to represent cell movement. The highest reproducibility in both the shape and intensity of the three cells is
observed in Figure 7 (f), confirming that using upper elevation angles is effective for defect recovery.

To quantitatively evaluate the performance of the interpolation methods, Figure 8 shows the root mean squared error
(RMSE) versus the ground truth of the interpolation region. We evaluated three cases of localized heavy rainfall on
2023/8/9, 2023/7/4, and 2023/9/5. By using interpolation with the U-net model on the results of the nearest neighbor
method for PPI data from a different site, we confirmed an improvement in RMSE for all cases. Notably, the model using
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upper elevation angles achieved the lowest RMSE. In the model using upper elevation angles, RMSE improved by up to
41% compared with the nearest neighbor method results for different site data, and by up to 21% compared with the
nearest neighbor method results using upper angle data itself.

2023/08/09 11:25 L T, 2023/08/09 11:25 [mm/h] " 2023/08/09 11:25 [mm/h]

800 39

20 40 60 80 100 120 ’ 0 20 40 60 s 100 120 ’ 0 20 0 60 80 100 120
(a) Missing data (7° missing) (b) Ground truth (Mt. Akagi radar) (c) Nearest neighbor (Mt. Takasuzu radar)

2023/08/09 11:25 [mm/h] 2023/08/09 11:25 [mm/h] 2023/08/09 11:25 [enmn/h]

20 40 60 80 100 120

(d) With inputs shown in Figure 3 (7° missing) (e) With inputs shown in Figure 4 (7° missing) (f) With inputs shown in Figure 5 (7° missing)

Figure 7: Interpolation results assuming a 7° width of missing data.
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Figure 8: RMSE vs. ground truth of the interpolation region [mm/h].

4.2 Case of 14° width of missing data

Figures 9 and 10 show an example of interpolation results assuming a 14° width of missing data occurring from an
azimuth of approximately 90° to 104° and the RMSE versus the ground truth in the interpolation region, respectively.

First, focusing on Figure 9(c) and (f), the localized rainfall cells are appropriately reconstructed as well as in Figure 7.
Additionally, in the RMSE of Figure 10, the results of the U-net model with upper elevation angle data as input showed
up to a 56% reduction in RMSE compared with the nearest neighbor method results for different site data. Furthermore,
even compared with the results of using upper clevation angle data itself with the nearest neighbor method, the U-net
model with upper elevation angle data as input achieved up to a 9% reduction in RMSE, demonstrating the effectiveness
of the U-net model using upper elevation angle data.

However, it was confirmed that the interpolation results using the U-net model with other inputs can sometimes result
in worse accuracy compared with interpolation using the nearest neighbor method with different site data. Compared with
the results in Figure 7, the interpolated regions in Figure 9(d) and (¢) are clearly overly smoothed, causing the rainfall
cells in Figure 9(b) to merge and lose variation in precipitation. This degradation occurs because larger missing regions
provide less contextual information for the network to infer the missing details accurately. Although the U-net utilizes
skip connections between the encoder and decoder to supplement local information, when the missing regions become
larger, the surrounding information becomes insufficient, resulting in overly smoothed outputs. It is preferable to
interpolate the missing data using only the own observation data of a site, as there may be cases where data from upper
elevation angles are also missing or in regions not covered by other site radar data. To overcome this, it is thought to be
effective to employ data augmentation to learn various missing patterns and to introduce attention mechanisms to
emphasize important local features. These approaches will be needed in future work.
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Figure 9: Interpolation results assuming a 14° width of missing data.
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Figure 10: RMSE vs. ground truth of the interpolation region [mm/h].

5 Conclusions

This report explored the interpolation of missing weather radar data using machine learning, specifically employing the U-
net model. We constructed models with three different inputs: missing data only, data from the time before the interpolation
timing, and data from another elevation angle without missing values. Our findings indicated that for small missing areas, the
U-net model outperformed the nearest neighbor method using data from a different site, with the highest accuracy achieved
by the U-net model utilizing data from another elevation angle without missing values. However, for larger missing areas,
while the U-net model with another elevation angle data showed improved accuracy compared with the nearest neighbor
method using other site data, models with other inputs exhibited decreased accuracy, highlighting regions for further
improvement.
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1 Introduction

Since modifying DWD's operational C-band radar (vertically pointing) birdbath scan in spring 2021, profiles of radar
moments and full Doppler spectra are routinely recorded at all 17 operational weather radars across Germany every 5 minutes.
These data complement polarimetric measurements from the radar volume scans at low elevation angles to investigate
precipitation processes in detail (Tromel et al., 2021). Furthermore, they can be exploited for atmospheric profiling of
precipitation, similar to how higher-frequency Doppler radars have been used to study cloud processes (Gergely et al., 2022).

A particularly valuable feature of these weather radar birdbath scans is that the data are only weakly affected by atmospheric
attenuation over the depth of the troposphere. Therefore, these radar measurements provide a unique view into extreme
precipitation events like hailstorms, which can enhance the information inferred from radar polarimetry (Ryzhkov and Zrnic,
2019). However, due to the pronounced clutter signal and hard- and software constraints, a detailed analysis of the C-band
radar Doppler spectra recorded in various types of precipitation, ranging from light snow to heavy rain and large hail, requires
flexible postprocessing methods that are adapted to each use case.

This article presents the main spectral postprocessing routines for identifying and quantifying different precipitation modes
in the recorded profiles of C-band radar Doppler spectra.

2 Methodology

The postprocessing chain for the dual-polarization C-band radar Doppler spectra consists of three main steps: isolating the
weather signal from non-meteorological contributions like static clutter, identifying the individual precipitation modes
contained in every Doppler spectrum within the weather signal, and calculating the corresponding modal and multimodal
properties, e.g. mode power, mean Doppler velocity, spectral width, and bimodal separation. Depending on the type of
precipitation event, the desired degree of detail of the multimodal analysis, and the required robustness of the analysis, different
options can be selected for postprocessing.

2.1  Adaptive postprocessing for Doppler spectra of snow

For narrow Doppler spectra of relatively low reflectivities, non-meteorological contributions such as static clutter near
Doppler velocities of 0 m s! can form a significant part of the overall signal (s. Fig. 1). Therefore, an effective filtering
procedure is essential for a detailed multimodal analysis of the Doppler spectra of snow.

As outlined by Gergely et al. (2022), a spectral filter based on the polarimetric characteristics of spectral differential
reflectivity and its texture together with signal power (illustrated in Fig. 1b) can often mitigate the contamination from clutter
and background signal sufficiently to isolate the weather signal (s. Fig. 3a). Appropriate filter thresholds are determined
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Figure 1: Summary of radar output for a birdbath scan of the Memmingen radar in southern Germany during snowfall on
27 March 2023; (a) profile of Doppler (power) spectra in (H)orizontal polarization channel ~ sZy, where negative velocities
indicate particles falling downward toward the radar, (b) pseudo-color RGB image of sZy (Red), absolute value of spectral
differential reflectivity sZpr (Green), and texture parameter SD(sZpr) (Blue).
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automatically and objectively by HDBSCAN clustering (Mclnnes et al., 2017) or by trial and error when emphasizing
simplicity and robustness of the algorithm.

After isolating the weather signal, individual precipitation modes at each height bin can be identified automatically by
UniDip clustering (Maurus and Plant, 2016) or by manually prescribing a fixed peak prominence. Then, the Doppler moments
can be calculated for each precipitation mode, e.g., mean Doppler velocity and spectral width (given as standard deviation
SD), as well as multimodal properties that describe the relationship between multiple simultaneously occurring precipitation
modes and uncertainty estimates of all Doppler moments and multimodal properties based on the differences between
executing the analysis for smoothed and unsmoothed Doppler spectra (Gergely et al., 2022).

2.2 Efficient postprocessing for Doppler spectra of convective storms

For broad Doppler spectra of convective precipitation, e.g. in hailstorms, the adaptive postprocessing routine requires much
more computational resources or computation time (due to the cluster analysis). Additionally, due to the similarity between
the polarimetric characteristics of intense precipitation and clutter in the recorded Doppler spectra, a separation of those
different contributions to the spectra is often not possible. Therefore, no clutter filter is applied, and the threshold value of the
peak prominence for identifying all relevant precipitation modes is set to (an uncalibrated spectral power of) 8 dB, based on
evaluating Doppler spectra for 15 hailstorms from 2021 through 2023. As the weather signal is much stronger and wider in
convective storms, the lack of a clutter filter usually has only a minor effect on the key analysis results (s. Fig. 5).

To resolve hailstones falling faster than the birdbath-scan Nyquist frequency of 13.3 m s™!, the Doppler velocity range has
to be extended. As outlined in Fig. 2, the recorded (folded) Doppler spectra are cyclically expanded at the slow- and fast-
falling edges and then cut to only retain the dealiased contiguous center profile of Doppler spectra, using an approach similar
to Garcia-Benadi et al. (2020). Doppler moments of each precipitation mode and multimodal properties are then calculated
analogously to the adaptive postprocessing routine.
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Figure 2: : Summary of radar output for a birdbath scan at the Hohenpeifsenberg radar in pre-alpine Bavaria during a
hailstorm on 30 April 2021, (a) profile of (still folded) Doppler spectra, (b) expanded Doppler spectra with white dashed lines
indicating cuts for isolating the dealiased center profile of Doppler spectra.

3 Dataset

Doppler spectra are recorded routinely for the (vertically pointing) birdbath scans at all 17 German C-band radars with a
radar pulse width of 0.4 ps. For each birdbath scan, 15 Doppler spectra are recorded at every range bin between 0.4 and 13.2
km above the radar site with a 25 m sampling interval and at a spectral (velocity) resolution of about 2.6 cm s™! for 1024
velocity bins. Further details on the German C-band radar network and the operational DWD birdbath scan are listed by Frech
et al. (2017) and Gergely et al. (2022).

Currently, HDFS birdbath data can be requested for individual test cases at kundenservice@dwd.de. The postprocessing
methods presented in Chapter 2 and several examples are available at https://github.com/birdbathDWD/PyBathSpectra

4 Results

Figure 3 illustrates the results of using adaptive postprocessing for the snowfall data shown in Fig. 1. Clutter and background
signal are filtered out effectively in Fig. 3a. Below about 1.3 km above the radar, 2 precipitation modes are found in the Doppler
spectra in Fig. 3b. These bimodal spectra may indicate slow-falling pristine crystals coexisting with faster falling lightly to
moderately rimed crystals or aggregates, for example. Skewness and kurtosis values are generally unremarkable, but show a
sharp spike at a height of 1.2 km, where the postprocessing routine fails to identify the second precipitation mode. Extreme
values of these very sensitive higher-order moments indicate a hidden multimodality that cannot be resolved (here, missed by
the multimodal postprocessing routine or, generally, in unimodal signal processing methods that do not account for
multimodality a priori). Multimodal properties are discussed by Gergely et al. (2022).
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Figure 3: Results of multimodal postprocessing for radar data shown in Fig. 1; (a) isolated weather signal, (b) radar
reflectivity, mean Doppler velocity, and spectral width for all identified precipitation modes (1st mode in blue, 2nd mode in
green), (c) higher-order Doppler moments of skewness and kurtosis.

Figure 4 indicates that the relative uncertainties in the calculated Doppler moments are mostly below 10 %. Only the higher-
order moments of kurtosis and, particularly, skewness are characterized by much larger uncertainties, because they are strongly
affected by the low-power left and right tails of the Doppler spectra, where the presented postprocessing routine can sometimes
produce spurious artifacts.

Figure 5 illustrates the postprocessing results for a supercell convective storm. At the time of the birdbath scan, intense rain
and hail with maximum hailstone diameters of about 2.5 cm were observed at the ground. While no clutter filter is applied
here (s. Chapter 2.2), no disturbing clutter signal or spurious clutter peaks are observed in Figs. 5a and b, in contrast to the
snowfall analysis in Fig. 1. The relative uncertainties of calculated mean Doppler velocity, spectral width, and radar reflectivity
are generally below 10 % while the uncertainties for the higher-order moments of skewness and kurtosis can be much higher
(not shown), similar to the results summarized in Fig. 4 for the snowfall example.

The postprocessing results in Fig. 5 show the bimodal Doppler spectra of slower falling rain (orange in Figs. 5b, c¢) and fast-
falling hail (dark blue in Figs. 5b, c¢) below the 0 °C level at a height of ~ 1.8 km above the radar. The third precipitation mode
(green in Figs. 5b, c¢) around the 0 °C level could indicate shedding of meltwater from hailstones. However, a detailed
interpretation of the evolution of the precipitation column is difficult due to the very limited (in space and time) 15 s snapshot
each birdbath scan can provide of the highly dynamic convective storm.

Nonetheless, Figs. 5b to e demonstrate that these birdbath Doppler data can also be used to separate hail and rain modes for
a multimodal analysis, analogous to how different snow modes were identified in Fig. 3. In Fig. 5c, for example, hail at heights
below the 0 °C level is characterized by a reflectivity of more than 50 dBZ, while the rain mode contributes only a lower
reflectivity of about 30 to 47 dBZ to the overall radar signal. Similarly, the typical Doppler velocity (i.e., particle terminal fall
velocity + vertical air movements) can be derived separately for hail (15 to 20 m s-1) and rain (5 to 12 m s-1), instead of relying
only on a single (average) value for both precipitation modes combined that is provided by common unimodal radar signal
processing.
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Figure 4. Uncertainty estimates for the Doppler moments illustrated in Fig. 3. Vertical dashed lines indicate relative
uncertainties of 10 %.
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Figure 5: Results of multimodal postprocessing for radar data shown in Fig. 2; (a) profile of expanded and dealiased
Doppler spectra, (b) mean Doppler velocity and spectral width for all identified precipitation modes with (c) corresponding
radar reflectivity for each mode, (d) higher-order Doppler moments.

Not every hailstorm features such a clear vertical structure as the birdbath scan of a well-isolated supercell shown in Fig. 5.
A hail cell that generated hailstones of more than 4 cm diameter at the ground, for example, produced more convoluted Doppler
spectra that proved more difficult to dealias and analyze. But, the bimodality consisting of a slower (rain or small-ice) and a
faster falling (hail) mode can generally be observed as a common feature, either close to the ground or higher up in the
precipitation column, for all 15 hailstorms that have been analyzed by the presented multimodal postprocessing methods for
DWD's C-band radar birdbath scan, so far.

Figure 6 shows another example of applying the spectral postprocessing methods to a birdbath scan that was recorded while
a supercell moved over the radar. This supercell again produced hailstones with sizes of up to about 2.5 cm in the vicinity of
the radar site, but during the birdbath scan, the bimodal Doppler spectra indicating the occurrence of hail can only be observed
at heights above 2 km. Between 2 and 3.5 km above the radar, the (orange) hail mode does not show much higher reflectivities
than the (dark blue) rain mode. Compared to the reflectivities of over 50 dBZ for the hail mode in Fig. 5, the reflectivities of
the hail mode of mostly less than 40 dBZ in Fig. 6 indicate a much lower hail concentration, or hail amount, at the radar
location for the latter hailstorm (assuming a similar general shape of the hail size distribution). Furthermore, Fig. 6 reveals
multiple regions along the precipitation column where the characteristic bimodal structure that indicates the occurrence of hail
can be found (also around 4 and 6 km above the radar), suggesting that multiple pulses of hail were produced by this supercell.

Compared to Fig. 3, the Doppler spectra of hail in Figs. 5 and 6 are much more affected by turbulence, leading to significant
spectral broadening, and by vertical air motion, evident from the pronounced zig-zag shape and the sometimes strong deviation
of the slow spectral edge by several m s-1 from a Doppler velocity of 0 m s-1. Nevertheless, modifying the detailed adaptive
postprocessing methods to emphasize resource efficiency and algorithm robustness as described in Chapter 2.2 allows for an
illuminating multimodal analysis of the birdbath scans recorded even in hailstorms, which has not been possible up to now.
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Figure 6: Results of multimodal postprocessing for a birdbath scan recorded at the Flechtdorf radar in central Germany
during a hailstorm on 22 June 2023, (left) profile of expanded and dealiased Doppler spectra, (right) mean Doppler velocity
and spectral width for all identified precipitation modes with corresponding radar reflectivity, similar to Fig. 5 with clear(est)
hail mode colored in orange.
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5 Conclusions

Doppler spectra from operational C-band radar birdbath scans can provide a unique view into precipitation processes from
snowfall to strong convective hailstorms. Together with Gergely et al. (2022), this presentation introduces spectral
postprocessing methods for the analysis of multimodal precipitation (i.e. multiple simultaneously occurring precipitation
regimes) in these birdbath scans. The radar signal-processing routine is implemented in the PyBathSpectra toolkit (available
for download and testing at https://github.com/birdbathDWD/PyBathSpectra) and can be adapted to the desired degree of
detail of the analysis results or the required robustness of the postprocessing methods.

One particularly intriguing application of the presented weather-radar Doppler spectra and postprocessing routine is the
analysis of the Doppler characteristics of hail. Hail reflectivity, mean Doppler velocity and spectral width can be separated
from the simultaneous contributions of other precipitation modes, e.g., rain near the ground, and then investigated in detail for
all hailstorms that pass over a radar site. If it is possible to estimate and filter out the vertical air motion from the Doppler
spectra, these spectra can then be used to retrieve the full hail size distributions similar to Ulbrich (1974), after converting the
corrected Doppler velocities to hail sizes based on previously determined hail fall velocity—size relationships (e.g., given by
Heymsfield et al., 2020). Such an approach can open a new avenue toward deriving the hail characteristics that determine the
damage potential of hailstorms more comprehensively than merely estimating a single maximum hail size (Grieser and Hill,
2019), which we will explore in our future work.
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Verifying the clutter suppression capability of X- and
C-band weather radars equipped with solid state
power amplifier transmitters
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1 Introduction

Clutter means unwanted echoes in the received radar signal caused by, for example, ground, buildings, or birds. Ground
clutter suppression is critically important for improving the radar data quality of any weather radar system. If not removed, the
ground clutter may produce strongly biased estimates of the fundamental spectral moments such as mean power, mean Doppler
velocity, and spectrum width. It is desirable to have a ground clutter filter providing good clutter suppression while minimizing
the radar parameter estimation errors, namely, standard deviation and bias (Nguyen and Chandrasekar, 2013).

There are different approaches that apply clutter filtering in weather radar signal processing. In the simplest transmission
scheme where radar pulses are transmitted and received with uniform spacing, ground clutter can be filtered in time domain
by using infinite impulse response (ITR) or finite impulse response (FIR) filters. These are high-pass filters having sharp narrow
notches characterized by their type, rejection depth, and the notch width. In many applications, these filters are sufficient.
However, when the signal and clutter overlap in the frequency domain as in the case of weather radar, the use of these filters
removes clutter but also notches out a part of the weather signal and causes bias in the estimates.

To mitigate this problem, advanced filtering methods have been developed. High-speed signal processors such as Vaisala
RVP series offer sufficient storage and computational power to implement frequency domain filters that, in some cases, are
adaptive. The frequency domain filters available in the RVP signal processor are:

* Fixed width filters with interpolation
* Variable width single slope adaptive processing
* Gaussian model adaptive processing (GMAP)

Fixed width clutter filter removes a specified number of Doppler spectrum components in the vicinity of the zero velocity
and then interpolate across the gap using a minimum of a specified number of the edge points at each end of the gap. This
simple approach attempts to preserve the noise level and possible overlapping weather targets. However, there can be still
some attenuation of the weather targets present especially if the weather spectrum is very narrow.

Variable width clutter filter is like the fixed width filter with an exception that the algorithm adapts automatically to the
width of the clutter. Thus, narrower nominal filter can be used, and the interpolation preserves the overlapped weather better
compared to the fixed width filter.

GMAP is a frequency domain approach that uses a Gaussian clutter model to remove ground clutter over a variable number
of spectral components that is dependent on the assumed clutter width, signal power, Nyquist interval and number of samples.
A Gaussian weather model is then used to iteratively interpolate over the components that have been removed, if any, thus
restoring any overlapped weather spectrum with minimal bias caused by the clutter filter. GMAP uses a discrete Fourier
transform (DFT) rather than an FFT approach to achieve the highest possible spectrum resolution. The algorithm is first
performed with a Hamming window and then, based on the outcome, the Hamming results are kept, or the algorithm is repeated
with either the rectangular or Blackman window. This allows the least aggressive spectrum window to be used, depending on
the strength of the ground clutter, to minimize the negative impact of more aggressive windows on the variance of the moment
estimates. Due to the high level of adaptivity, minimal operator intervention is required to setup the filter.

The GMAP technique is fully implemented and operational in Vaisala RVP signal processor and has been evaluated in
comprehensive tests to meet all requirements of the Next Generation Weather Radar network (NEXRAD) in the United States
(Siggia and Passarelli, 2004). Detailed info about GMAP algorithm can be found in (Siggia and Passarelli, 2004). GMAP
filtering is also the standard method used in Vaisala weather radars operationally.

In this study, ground clutter filtering performance of Vaisala X- and C-band weather radars with solid state power amplifier
(SSPA) transmitter and Vaisala RVP signal processing technology is verified. Considering the limitations of measurements
with real clutter targets, results show that expected performance can be well achieved. Clutter suppression ratios of over 50dB
were measured during this study for both radar types.
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2 Measurements

Vaisala WRS series polarimetric weather radars are based on antenna mounted transceiver architecture using separate SSPA
transmitters for each polarization and Vaisala RVP signal processing technology. Measurements of this study were performed
using WRS400 X-band and WRS300 C-band weather radars, both providing data with high resolution and excellent precision
for short and long range meteorological, hydrological and aviation purposes, typically up to 50....150km for WRS400 and up
to 150...300km for WRS300, depending on application.

WRS400 X-band radar used under this study is located at the Vaisala headquarters, 12km north of Helsinki and WRS300
C-band at the University of Helsinki campus, 4km north of Helsinki, Finland. Both radars are equipped with Vaisala RVP900
signal processor. High duty cycle and low peak power of the SSPA transmitter encourages to use long transmit pulses to benefit
from high sensitivity. These long pulses are compressed for high range resolution using non-linear frequency modulation
(NLFM). Blind range caused by the long pulse in the vicinity of the radar is covered by hybrid pulsing technique, where a
conventional short pulse with slightly different frequency is transmitted right after the long one and data streams of these
separated pulses are combined in the signal processor to form a single measurement file.

Main specifications of both radars are listed in Table 1. Most relevant specification related to this study is the phase stability
and the table shows the corresponding theoretical clutter suppression CS [dB], computed directly from the phase stability, or
phase noise PN [°] as

cs=—-201 (PN ) )
= 0810 180077.' .

Table 1: Main specifications of the Vaisala WRS weather radars. WRS400 used in this study was equipped with 2.4m antenna
and 400W transmitter, whereas WRS300 was equipped with 4000W transmitter option.

Parameter Unit WRS400 WRS300
Frequency MHz 9300...9700 5500...5700
Transmit peak power W > 400 > 4000
Phase noise PN ° <0.5 <0.1
Clutter suppression CS dB >41 > 55
Antenna

Diameter m 24 4.5

Gain dBi > 45 > 45

Beamwidth ° <1 <1
Typical calibration reflectivity at 1km

Pulse width 90us (compressed to 1ps) dBZ -42.0 -47.8

Pulse width 44ps (compressed to 0.5us) -35.9 -41.7

Clutter suppression capability was studied using two types of measurements. First, the actual phase noise of the radar system
was verified by pointing the antenna towards a distinguishable fixed ground target and checking the obtained phase noise
computed by the RVP signal processor. Doppler spectrum was measured using 256 radar pulses and 8 consecutive spectrums
were averaged for the result.

Hybrid pulsing of 44us + 1us was used, but as the targets were selected around 10km range from the radars, only the data
stream from the 1us conventional pulse was used. Short range and short pulse ensured that the echo signal was strong enough
and that width and length of the contributing volume was as small as practicable to minimize possible interfering targets in the
same volume. Measurements were performed on 5th February 2021 for the WRS400 and on 14th December 2023 for the
WRS300.

Second measurement was to verify the actual clutter suppression and performance of the GMAP Doppler filter by using
radar scans introduced in Table 2. For WRS400, the data was collected on 11th April 2021 by measuring a clutter target
embedded in mild to moderate precipitation. For WRS300, measurements were performed on 28th August 2023 from clutter
target embedded in moderate precipitation. Totally 120 volume measurement files were collected for the WRS400 and 97 files
for the WRS300.

WRS400 used 44us NLFM pulse only, compressed to 0.5us, whereas WRS300 used 90us + 4us hybrid pulsing with long
pulse compressed to 1us. However, in this study, the clutter target was located far enough from the radar so that only data from
the long pulse region was used for analysis. Data from the lowest available elevation angle of 0.5° of the volume scans were
used for both radars.
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Table 2: Scan configurations used in this study for WRS400 and WRS300 weather radars.

Parameter Unit  'WRS400 WRS300

Scan name VOL-GMAP VOL-02

Pulse width us 44 90 + 4 (hybrid)
Range resolution m 75 150

Pulse repetition frequency Hz 1000

Number of samples 32

Elevation angle ° 0.5

3 Methods and Results

3.1 Verifying phase noise with fixed ground targets

Ascope utility of the Vaisala weather radar software was used to display the data measured from the fixed ground targets,

which were high concrete buildings for both radars. RVP signal processor computes the phase noise PN from signal quality
index SQI as

PN = % J—1In(SQD , 2)

where SQI is the normalized magnitude of the autocorrelation at lag 1 and varies between 0 for an uncorrelated signal (white
noise) to 1 for a noise free signal with spectral width of zero (pure tone). Ascope utility plots the Doppler spectrum and displays

the computed phase noise PN and other related parameters directly in real time. Figure 1 shows results of the measurements
from both WRS400 and WRS300 radars.
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Figure 1: Screenshots of the phase noise measurements from fixed ground targets using the Ascope utility software. WRS400

radar (5" February 2021) on the left and WRS300 (14" December 2023) on the right.

As can be seen, both radars clearly fulfill the phase noise specification listed in Table 1. Using equation (1), the
corresponding clutter suppression is 46.8dB for WRS400 and 57.7dB for WRS300.

3.2 Identifying clutter points from radar images

Vaisala IRIS Focus software provides a large set of tools for viewing and analyzing the weather radar data and it was used
to identify clutter targets for this study. Potential clutter targets can be identified by looking at total reflectivity data moment
T, which is reflectivity before any clutter filtering is applied. Clutter points appear as considerably high individual 7 values on
the IRIS Focus map view. In this study, we concentrated on immobile ground clutter targets. Therefore, the high total
reflectivity value should always appear in the same location and at approximately constant magnitude. When the GMAP clutter
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filter works as intended, filtered reflectivity Z from the clutter target location should have same magnitude with the surrounding
part of the measurement volume.

By this simple method, two ground clutter target locations were chosen for further analysis. For the WRS400 radar, a
chimney of Myllypuro heating plant constructed from concrete at 13km range south-east of the radar site was selected, whereas
for the WRS300, a radio mast with steel lattice structure in Porkkala region, 38km south-west from the radar was used.

Figures 2 and 3 show these clutter targets displayed by IRIS Focus software. Myllypuro heating plant shows up as 55.5dB
clutter echo in 7 data moment measured by WRS400. The corresponding filtered reflectivity Z is 6.1dB in this individual
measurement, which is well in line with surrounding weak weather echoes from light rain. The radio mast in Porkkala shows
up as 53.8dB clutter echo in 7 data moment measured by the WRS300. The corresponding filtered reflectivity Z is 33.2dB,
which is also in line with the surrounding weather echoes from moderate rain.

JAISALA / 1 Focm

2021-04-11 ] e

Filtered reflectivity e i Un-fiftered reflectivity

; _ v

Myllypuro ' Myllypuro
heating plant ; g 8| heating plant

Miid to moderate widespread precipit

P v - i oy = s o srernd i B
Figure 2: PPI plots of the WRS400 radar from April 11™ 2021 showing the unfiltered reflectivity T on the right (a) and the
filtered reflectivity Z after GMAP processing on the left (b).
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Figure 3: PPI plots of the WRS300 radar from August 28" 2023 showing the unfiltered reflectivity T on the right (a) and the
Sfiltered reflectivity Z after GMAP processing on the left (b).
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3.3 Time series analysis of clutter points

The performance of the GMAP clutter filter was analyzed quantitatively using time series of the reflectivity data from the
identified ground clutter targets. The time series data was composed by collecting the values of the unfiltered reflectivity T’
and the filtered reflectivity Z from the clutter target location from multiple consecutive radar measurements using the scan
configurations specified in Table 2. Same data was also collected from a location that does not have clutter source but is located
near the ground clutter target, see reference points in Figures 2 and 3. This enables analyzing if the weather echoes are
preserved by the clutter filter.

The unfiltered total reflectivity of the clutter targets was high, approximately 50dB, depending on the target. The filtered
reflectivity should follow the surrounding weather conditions implied by the nearby reference point with no clutter. Subtracting
the filtered reflectivity Z from the unfiltered reflectivity T gives the clutter suppression. The time series are shown in Figures
4 and 5.
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WRSA00 (Vantaaniaaksa), Clutter Suppression, 2021-04-11T16:04-2021-04-11T23:59, task=VOL-GMAP
azimuth angle: 118.0 degrees, elevation angle: 0,48 degrees, range 13.05 km
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Figure 4: Time series data of the unfiltered (T) and filtered (Z) reflectivity data measured with WRS400 radar on 11" April
2021 from Myllypuro heating plant and from the reference location with no clutter present. Clutter suppression is plotted
with dashed line and has maximum value of 54.0dB.

WRS300 (Kumpula), Clutter Suppression, 2023-08-28700:01-2023-08:28T12:49, task=Y0L-02
azimuth andle: 230.4 degrees, eievation angle: 0.48 degrees, range 37,95 km
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Figure 5: Time series data of the unfiltered (T) and filtered (Z) reflectivity data measured with WRS300 radar on 28" August
2023 from the radio mast in Porkkala and from the reference location with no clutter present. Clutter suppression is plotted
with dashed line and has maximum value of 53.5dB.

Figures 4 and 5 show that both WRS400 and WRS300 radars consistently reaches clutter suppression values of better than
50dB with the GMAP clutter filter. The maximum suppression values obtained from these time series are 54.0dB for the
WRS400 and 53.5dB for the WRS300. Looking at the last half of both time series with some weather present, as indicated by
the increased reflectivity, the curve of the filtered reflectivity Z follows the reflectivity measured from the reference location.
This implies that the GMAP processing is not filtering out overlapping weather from the clutter location too aggressively.

The obtained clutter suppression value for the WRS400 radar fulfills the specification of Table 1 very well, being
occasionally even better. However, the corresponding value for the WRS300 is slightly less than specified. This is likely caused
by the measured clutter target being a mast, rather than a concrete chimney. Furthermore, the distance to the WRS300 target
was significantly longer, making the echo signal weaker, contributing volume wider for possible interfering targets and finally,
allowing slightly longer time for the radar’s local oscillator to drift while waiting for the echo signal.

4  Summary

Results of this study show that both WRS400 X-band and WRS300 C-band SSPA weather radars achieve their phase noise
specifications very well when measuring a fixed ground target around 10km range. Measured phase noise values correspond
to clutter suppression of 46.8dB and 57.7dB for WRS400 and WRS300 respectively. Time series analysis show that both
systems can consistently reach clutter suppression of better than 50dB with the GMAP algorithm. With WRS400, this is even
better than what is expected with respect to the phase noise measurements. For WRS300, the result is still good, considering
the longer range and lower quality of the available target. It was also verified that the GMAP clutter filter algorithm can
preserve the meteorological echoes without suppressing them significantly.
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1 Introduction

Minimum detectable weather signal, or sensitivity, is one of the key parameters when estimating the basic performance of
any weather radar system. It describes how weak target can be detected by the radar at a certain range, or it can be used to
solve the maximum range of detection for weather target having certain intensity.

Detected signal at the radar receiver is a combination of echo signal and thermal noise, both varying significantly from
sample to sample. For this reason, threshold value for the signal to noise ratio (SNR) required for weather detection must be
used. This value depends on the expected fluctuations of the echo signal, signal processing techniques used as well as false
alarm rate (FAR) and probability of detection (POD) accepted. In the literature, there are theoretically computed values
available for SNR required for different kind of fluctuations, FAR, POD and number of radar pulses averaged.

In this study, the sensitivity of X- and C-band compact weather radars with antenna mounted transceiver and solid-state
power amplifier (SSPA) transmitters are compared with a conventional C-band system using a magnetron transmitter.
Radars under study are Vaisala WRM200 (C-band magnetron), WRS300 (C-band SSPA) and WRS400 (X-band SSPA).

Sensitivities are first estimated using the conventional weather radar equation with typical parameter values of each radar
type, and the theoretical value of the SNR required from the literature. Finally, the actual performance of the installed radar
systems is verified by analysis with real weather data.

2 Theoretical background

Several factors affect the minimum detectable weather signal of a weather radar. This includes factors that are independent
of the radar system design, such as propagational effects of the atmosphere. However, when comparing the performance of
different radar types, the most relevant factors are those defined by the technical properties of the radar itself, such as system
attenuations, signal processing methods used and characteristics of the transmitter, receiver, and the antenna.

With the conventional weather radar equation, these factors can be used to calculate the power of the received echo signal
from a target of known intensity. However, as weather target consists of distribution of moving scatterers, the echo intensity
varies significantly from pulse to pulse. At the same time the receiver also detects thermal noise with varying amplitude. For
this reason, detected signal must be threshold so that data points with weak echo signals are mostly kept, while most of the
data points with noise will be removed.

Amount of remaining noise after threshold is quantified with F4R, which describes how often in average the noise power
is high enough to pass the threshold. Number of weak echoes passing the threshold is quantified with POD. The threshold
value is called SNR required for detection (also known as detectability factor). Fluctuations of both echo and noise signals
can be reduced by averaging many radar pulses for a single data point. This consequently reduces the SNR required for
detection but increases the time for the radar scan to complete.

In the literature, there are theoretically computed graphs available for the dependence between the FAR, number of
samples and the SNVR required. Separate graphs are typically available for targets with different kind of expected fluctuations
and different POD. For example, if assuming fluctuation according to Swerling case 1, averaging 40 pulses and allowing
FAR =10 and POD = 50%, the resulting SNR required according to Skolnik (1990) is 0dB. This can be considered a typical
value for a modern polarimetric weather radar system considering constraints, such as time available for an operational scan.

When the SNR required is known, then corresponding minimum radar reflectivity factor z,., for a target with range » can
be solved from the conventional weather radar equation as

1024 1n(2) ArZn'b

S
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where ¢ is the speed of light, K is the dielectric constant of liquid water (JK|? = 0.93) and a is the 2-way specific attenuation
of air, value defined according to International Organization for Standardization, ISO (2019). The ratio inside the parenthesis
is the SNR required for detection, s being the echo signal and » the noise power.

Other parameters of equation (1) are related to the radar system. A is the wavelength used, » " is the spectral noise and b the
noise equivalent bandwidth of the receiver signal processor. p; is the transmit peak power and when multiplied by the pulse
length 7, it yields to transmit pulse energy. Attenuation gr considers the pulse energy that is lost in digital filtering of the
signal processor, whereas attenuations g, and g, accounts for waveguide losses in transmit and receive respectively. g. and @
are the antenna gain and beamwidth values respectively. Relation of these parameters with respect to the block diagrams of
the radar systems under study are illustrated in Figure 1.

SNR required for detection can be further reduced by using advanced signal processing methods, such as Vaisala enhanced
reflectivity algorithm, which utilizes coherent averages of the echo signals from both the horizontal and vertical channels of
the weather radar. In case of 40 averaged pulses, the SNR required reduces approximately by 3 dB according to Kerénen
(2014). Furthermore, the actual FAR can be reduced up to two orders of magnitude by utilizing speckle filtering, where
isolated pixels of detected signals are removed from the data.

3 Weather radars under study

This study verifies the sensitivity of three different weather radar types, which are Vaisala WRM200 with conventional C-
band magnetron transmitter, WRS300 with C-band SSPA transmitter and WRS400 with X-band SSPA transmitter. Latter
two utilizes compact antenna mounted transceiver architecture, whereas the WRM200 has the transceiver cabinet located in
a separate equipment room. WRM200 and WRS300 operate in frequency range of 5.5...5.7GHz, whereas WRS400 operates
in range of 9.3...9.7GHz. All radars are polarimetric and uses parabolic center fed antenna reflector.

WRM200 system used in this study is equipped with Vaisala RVP10 signal processor and a magnetron transmitter with
maximum duty cycle of 0.12% and pulse width range of 0.5...3.0ps. Transmit output is divided between horizontal and
vertical polarizations in simultaneous transmission and receive mode (STAR) for polarimetric measurements. WRS300 and
WRS400 systems are equipped with RVP900 processor, and each polarization has a dedicated SSPA transmitter with
maximum duty cycle of 10% and pulse width range of 0.5...90.0us. Typical values of all relevant parameters with respect to
the sensitivity of each radar type are listed in Table 1 and block diagrams in Figure 1 illustrates the main components.

High duty cycle and low peak power of the SSPA transmitter encourages to use long transmit pulses to benefit from high
sensitivity. These long pulses are compressed for high range resolution using non-linear frequency modulation (NLFM).
Blind range caused by the long pulse in the vicinity of the radar is covered by hybrid pulsing technique, where a
conventional short pulse with slightly different carrier frequency is transmitted right after the long one and data streams of
these separated pulses are combined in the signal processor to a single measurement file. To make the sensitivity gap
between the long and short pulse regions less pronounced, the signal processor can be configured to blend the data streams
of short and long pulses by a configurable linear transition within a transition range.

Table 1: Typical values of the radar equation parameters and resulting sensitivity for each radar type under study.

Parameter WRM200 WRS300 WRS400 ?
Wavelength 4 5.33cm 3.10cm
Antenna gain g, 45.0dBi % | 45.0dBi ¥

Antenna beamwidth 8 0.95°

Transmit power pr 250.0kW > 4.0kW 4 | 400W ¥
Pulse width ¢ 2.0us 90.0us

Digital filter loss gr 1.2dB 4.5dB

Transmit loss g 4.2dB -9

Receive loss g- 0.8dB -9

Noise equivalent bandwidth b 0.6MHz 0.4MHz

Spectral noise P n’ -111.5dBm/MHz -112.0dBm/MHz -111.5dBm/MHz
Typical sensitivity at 100km ¥ -3.8dBZ -6.4dBZ -0.2dBZ

1 WRS300 with 4kW transmitter option. 2) WRS400 with 400W transmitter and 2.4m antenna options. 3) At antenna port. 4 At calibration reference plane.
3 At TX output. %) Attenuation of fixed waveguides incl. in antenna gain and transmit power values. 7) At calibr. ref. plane, antenna pointing at clear sky.
8) Equation (1), SNR required = 0dB, 2-way specific attenuation of air ¢ = 0.014dB/km (C-band), ¢ = 0.018dB/km (X-band).
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VAISALA WRM200 WEATHER RADAR BLOCK DIAGRAM
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Figure 1: Calibration block diagrams of WRM200 (top) and WRS300/WRS400 (bottom).

4 Measurements and results

To validate the actual sensitivity, three datasets were collected, one for each radar type. PPI scans were used with low
clevation angle and a typical pulse width for a long-range surveillance scan, providing optimal combination of sensitivity
and range resolution. WRS300 and WRS400 SSPA radars used hybrid pulsing with blending algorithm, while WRM200
used a conventional pulse. Doppler filtering was used to reduce the ground clutter returns, but other quality thresholding was
done only in post processing. Details of the scan configurations are listed in Table 2.

Collected data was visualized by plotting cumulated distributions of measured radar reflectivity as a function of range, see
Figures 2...4. Data was post-processed with signal quality index (SQJ) threshold of 0.4 and RhoHV threshold of 0.85. SOI
describes the coherency between transmit and receive pulse with value range of 0...1 (from non-coherent to fully coherent).
It was used to remove most of the noise and possible 2™ trip echoes. RhoHV is the correlation coefficient between horizontal
and vertical echo signals and was used to filter out noise and non-meteorological targets.

Results show that for each radar system, the distribution clearly goes below the typical sensitivity of the radar type in
question, plotted with a black dark curve in the figures. This confirms that the actual sensitivity is as expected according to
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equation (1) with SNR required of 0dB. This is the case for WRS300 and WRS400 also, even though the data was measured
with 32 pulses only, which according to Skolnik (1990) would correspond to 0.5...1.0dB higher SNR required for detection.

The actual FAR with the used scan settings was studied for WRM200 and WRS300 by a separate set of measurements
with the transmitter turned off to measure noise only. Scan configurations were as in Table 2 with the exception that 40
samples were averaged for both radars and elevation of 10° and suitable azimuth sector was selected to avoid interfering
signals and excess noise from ground and obstacles. Data set for each radar contained of order of 10° or more range gates in
total. These noise data files were then filtered with SNR threshold of 0dB and corresponding FAR was calculated as a ratio of
number of noise data points left divided by the number of original range gates in total and the resulting FAR was 107,

which is close to but slightly more than the assumed 10** according to Skolnik (1990).

The improvement of the sensitivity by the Vaisala enhanced reflectivity algorithm has been verified earlier for the
WRM200 in Kerdnen (2014) and recently for the WRS400, showing an improvement of 2.8dB with 32 averaged pulses
according to Puhakka (2023).

Table 2: Information about the scan configurations, radar sites and the datasets used.

Parameter WRM200 ! WRS300 ? WRS400 »
Pulse width 2.0us 90.0us (compressed to 1.0us) +4.0us hybrid
Range gate length 300m 150m

Range gate width 1°

Pulse repetition frequency 500Hz | 1000HZz
Number of samples 40 32

Scanning speed 12.5°%s 15.6°/s 31.3%s
Elevation angle 0.5° 1.0°
System calibration date 2023-11-13 2023-04-26 2023-10-19
Actual sensitivity at 100km -4.4dBZ -6.3dBZ -0.4dBZ
Measurement date 2024-02-13 2023-11-06 2023-11-04
Number of scans measured 97 75 112

D WRM200 site 26km north-northeast of Helsinki, Finland. ) WRS300 site 4km north-northeast of Helsinki and equipped with 4kW transmitter option.
3) WRS400 site 12km north-northwest of Helsinki, Finland and equipped with 400W transmitter and 2.4m antenna options.

dBZ distribution as a function of range, 5 km - 200 km
WRM200 (Kerava), SQI > 0.4, RhoHV > 0.85, elevation = 0.57 deg, task=VOL-01-KER
2024-02-13T20:06 - 2024-02-14T719:42

Theoretical sensitivity at SNA = 0d8.
40 —— WRS300, 90us + 4us hybrid puise
— WRS5400, 9Gus + 4us hybrid pulse
— WRM200, 205 pulse, 0.0m WG

160

140

25 50 75 100 125 150 175 200
Range [km]

Figure 2: Cumulated distributions of the measured radar reflectivity as a function of range for WRM?200.
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dBZ distribution as a function of range, 5 km - 200 km
WRS300 (Kumpula), SQI > 0.4, RhoHV > 0.85, elevation = 0.49 deg, task=VOL-04
2023-11-06T10:01 - 2023-11-06T19:53
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Figure 3: Cumulated distributions of the measured radar reflectivity as a function of range for WRS300.

dBZ distribution as a function of range, 5 km - 130 km
WRS400 (Vantaanlaakso), SQI > 0.4, RhoHV > 0.85, elevation = 0.99 deg, task=VOL-02
2023-11-04T05:01 - 2023-11-04T12:57
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Figure 4: Cumulated distribution of the measured radar reflectivity as a function of range for WRS400.
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5 Conclusions and discussion

This study verifies that the installed WRM200, WRS300 and WRS400 weather radar systems achieve well the theoretically
estimated sensitivity, even though the observed FAR due to noise was slightly more than what was expected in the literature.
Considering the C-band radars, the minimum detectable weather signal of -6.4dBZ at 100km range for the WRS300 SSPA
system is 2...3dB better compared to the conventional WRM200 magnetron system. This is due to the compact antenna
mounted architecture with significantly reduced waveguide runs and successfully utilized high duty cycle of the SSPA
transmitter to improve the transmit pulse energy. With NLFM pulse compression techniques, this improvement of the
sensitivity is achieved with spatial resolution of 150m, being only half of the 300m used with the conventional magnetron
transmitter. The sensitivity of the WRS400 X-band SSPA radar is approximately 6 dB less compared to the WRS300 C-band
alternative, which is expected as the X-band system has been designed for short range measurements and thus, with
significantly lower transmit power and furthermore, with slightly higher noise figure of the receiver.
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1 Introduction

Weather radars are valuable tools for meteorological and hydrological applications due to their ability to measure
precipitation and wind. However, blockages in the measurements often occur at low elevation angles caused by high buildings,
vegetation or mountains. In addition to these blockages, WiFi signals or wind turbines can also disturb the measurements and
affected range gates or even whole sectors might be lost. Furthermore, due to the local nature of rain, plan position indicator
(PPI) measurements are generally not homogeneously filled along the entire range, which naturally causes a fragmented data
distribution. It is desirable to close all these types of data gaps in order to maximize data availability and to increase the overall
situational awareness. For example, these data gaps can have a negative impact on meteorological data products like wind
shear at airports or for data assimilation into NWP models.

Physics-Informed Neural Networks (PINN) is a research field in which neural networks are trained to solve partial differential
equations (PDE) that describe physical phenomena. The PINN method presented in this paper applies the Navier-Stokes
equations (NSE) as the underlying PDE to reconstruct 3D wind fields by taking the radar radial velocity measurement data as
boundary conditions into account. This approach offers the possibility to fill data gaps in radial velocity PPI (V-PPI)
measurements.

In this contribution, examples of the reconstruction of disturbed or incomplete weather radar PPI’s of radial velocity
measurements are demonstrated. Statistical results on more than 900 radar measurements showed that 10 degrees azimuthal
sectors could be reconstructed with an absolute error of 2 m/s in 97% of all cases. This result is in good agreement with a
Doppler lidar measurement campaign in which almost one year of data was analyzed. Doppler lidars as the “clear air”
counterpart of weather radars with regard to remote wind measurement were used, because they provide data much more often
than radars. Lidar measurement data were also used to evaluate the three velocity components for a 30° reconstructed sectors
which showed an absolute error of ~1m/s.

The advantage of PINN in contrast to data-driven ML models is twofold; firstly, the ML decision-making process offers
more transparency to the user (white box approach) and secondly, the collection of a theoretically all-encompassing training
dataset is not required. With PINN, a neural network is trained from scratch for each new set of measurement data. By using
a pre-trained network (Transfer Learning (TL)) or Meta Learning techniques, the training time of PINN can be accelerated to
ensure a real-time capability while avoiding demanding hardware requirements. By applying these methods, an acceleration
of the PINN algorithm resulted in runtime reduction by a factor of 5 and 107 for TL and Meta Learning, respectively.

2 Methodology

Neural Networks (NN) are usually trained with very large amounts of data. These so-called Deep Learning models have
two drawbacks: 1) the decision-making process is incomprehensible for the user (black box), 2) they require a very
comprehensive, carefully prepared and labelled training dataset that represents the underlying pattern and contains minimal
spurious correlations. Contrary to this, Physics-Informed Machine Learning is a Deep Learning approach for solving
differential equations describing physical phenomena using boundary conditions from data. The subject area develops rapidly
since the work of Raissi [1] who introduced the PINN data driven approach in 2017.

In contrast to the black box models, PINN presents a transparent (white box) algorithm due to the integrated physical
equations. Many acronyms like physics-informed, physics-guided in combination with neural networks (NN), deep learning
(DL) or machine learning (ML) exist [2], but all of them relate to a machine learning approach using neural networks to
approximate a solution to a differential equation describing a physical phenomenon. In this regard, they present an alternative
to the classical methods of integrating these equations in a straightforward manner for specific initial and boundary conditions
and can be likened to function fitting rather than numerical integration.

The goal of this contribution is to describe the coupling between the PINN algorithm with weather radar velocity data to
reconstruct missing or disturbed sections. In the literature, according to the authors’ knowledge, there is no publication dealing
with PINN and weather radar velocity data. For wind lidars, Zhang (Zhang & Zhao, 2021), is known for having reported the
application of a Physics-informed neural networks with short range wind lidar data [3], [4].
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For wind monitoring at an airport, a dedicated weather radar usually performs multiple plan PPI scans under different
elevation angles and reports radial velocity within a certain range in a number of range gates per line of sight (LOS). To
reconstruct a PPI-sector, only the left and right adjacent radar LOS measurements serve as an input to the PINN algorithm.
The architecture of the PINN coupled with weather radar data is shown in Fig. 1. The neural network applied here consists of
five hidden layers, each of which features fifteen neurons (in Fig.1 only 3 layers, each accommodates five neurons, are depicted
for simplicity). The spatial and temporal domain data in Cartesian coordinates (X, y, z) and time (t) of the blanked sector serve
as inputs for the neural network. The output data set consists of the three velocity components U, V and W suggested as a best-
fit solution of the NSE, for the given input data. Please note that we use the 3D NSE in Cartesian coordinates for the wind
component evaluation shown in section 4.2. However, it is straightforward to transform them or to use the NSE directly in
spherical coordinates as we used in section 4.1. An implementation can be found in [5].

APPI Measurement Sector blank example of \

_40-50°

Empty Sector:

Fv\‘ Time (t) |
€ il sk
Spatial (%)

Spatial (y)
patial (z)

o000
sos00 0
N\

Time (t)
Spatial (x)
Spatial (y)

Spatial [z) . &
\ Rad. Velocity (Ur) \ ‘ /
Loss Function =
MSE qqar + MSEys

3

Incompressible 3D NS Equation

Boundary Measurements

in cartesian coordinates

& uu ou w3 1 Fu i P
g . at ax  dy az dx  Re gx* gy a7
E | nr 5 5
7 1 Red: LOS @40 o, . d a1 v dFv &
gos < i tu—Hv—tW—=——Ft— (= + — + —)
z Blue: LOS@50 a7 ax Ay az dy  Re d9x*  ay* 22
. \ dw  Ow  dw  ow _ dp Lauiﬂ*@‘
Boost T g NG, TG T ViR ae a2 az?

1 TN ‘ ou  dv  dw

L W
x oy ez

Figure 1: Method of PINN applied to weather radar data (or Doppler lidar data)

The NSE is integrated into the loss function together with the adjacent left and right LOS radar measurements. The non-
dimensionalized incompressible Cartesian 3D NSE is depicted in Fig.1.

Here, R, is the Reynolds number, U, V', Wdenote the three velocity components. For the calculation, all variables will be non-
dimensionalized through selection of appropriate scales for the characteristic length L (200 m) and velocity U, (10 m/s) to
r=r/L¢ , U=U/U;, t=t/(L¢/U.) and R.=U; r;/v, where v is the kinematic viscosity of air (1.5 10" m?/s). The characteristic
length L. and velocity U, were chosen according to the assumptions of meteorological scale analysis [6]. The Rossby number
R,~U/(L¢ - f) (with £=107*s™%, Coriolis parameter,) needs to be significantly larger than one for non-geostrophic wind
(boundary layer phenomena) for which the Coriolis forces can be neglected. To minimize the loss function, the mean squared
error (MSE) composed of the lidar data and the residual of the NS equation are calculated in (5).

Loss Function = MSEyg + MSE; ;44 (1)

Ng
MSE L [fns (5, v5.25,69)| 2 (2)
NS Ng NS l.y,.,.
i=1

Nip NiLR

MSEL gy~ Z|(ULL(X.LL,yLLzEL,tLL)V| +_Z|(ULR Fy AR )

This form of loss function follows the approach of Zhang & Zhao [4], where xl , y z>, 5, are the spatial and temporal data
characterizing the PPI sector to be reconstructed by the PINN-algorithm. x-*, yLL 7t are the spatial and temporal data

corresponding to the left and x'* yLR LR LR for the right lidar beam. UF®, UM, are the radial velocities corresponding to
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the left and right lidar beams where V; correspond to the radial velocities of the reconstructed domain, i.e. the proposed
solution of the NS equation. Nyg is the number of range gates inside the reconstructed domain, while N;;, N;gare the
respective numbers of range gates in the left and right boundary LOSs. fyg is the residual function modelling the adequacy of
the NN output to the NS equation and thereby contributing to the total mean square error assigned (MSEns). The learnable
parameters (weights and biases) within the NN need to be trained by enforcing that for the inputs ( x7, yis, z>, ), the output

of the network U; approximates a solution of the NS equation, while at the same time reproducing the boundary conditions as
good as possible. In contrast to NN not constrained by physics, PINN has to be re-trained for every new set of input radar data.
Therefore, in order to minimize the loss function recurrently, the training process must be carried out very quickly for real-
time applications. To control the training run-time process, two parameters are specified as truncation criteria: The optimization
algorithm minimizing the loss function stops, if either a tolerance of 107, or a number of 1500 iterations is reached. This leads
to a compromise between computation time and accuracy. For the wind field reconstruction algorithm for a weather radar in
real-time operation, the PINN algorithm has to work very fast in order to not significantly decrease the radar data update rate.

3 Dataset

Data from two measurement campaigns were used in this contribution. Firstly, high resolution wind measurement data
provided by a SKIRON?P 3D scanning Doppler lidar recorded during an almost one-year test bed campaign at Frankfurt airport
in 2020 have been used to evaluate the performance of PINN. We focused our investigation on 360° PPI's taken with an
azimuthal resolution of 2.5 degrees. The clevation angle was 1.5 degrees and the range resolution was 120 m. For the
development of the wind field reconstruction, a sector of 35°, ranging from 70° to 105°, has been cut out. The result of the
reconstruction is compared to the measurement.

Secondly, we used selected (with a certain amount of values) V-PPI data from a mobile X-Band (Meteor 50Dx) weather
radar, located at Braunschweig in 2015 were chosen to reconstruct a 10 degree sector applying the PINN algorithm. The
azimuthal resolution of the radar was 1°, the elevation angle was 0.5°, the range resolution 150 m and the maximum range was
75 km.

Thirdly, a comparative measurement campaign was carried out to characterize the wind measurement capabilities of the
Doppler lidar SKIRON®P. The Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig has built a bistatic coherent
Doppler lidar capable of measuring all three wind components. For highly accurate optical remote wind measurements
traceable to SI units, the PTB developed a wind tunnel with an open volume to calibrate the wind lidar [7]. Due to its high
spatial and temporal resolution and low measurement uncertainty, the PTB lidar serves as the reference instrument in these
comparative measurements. Both wind measurement systems had been separated by a distance of 1100 m between a site on
the PTB campus and the premises of the Deutscher Wetterdienst (DWD). In order to compare the reconstructed velocity
components with the PTB lidar, a 30° azimuthal sector was reconstructed by PINN in which the middle LOS coincides with
the measured volume of the PTB device. In this LOS the range gate was analyzed which corresponded to the measurement
volume of the PTB lidar profiler [8].

4 Performance results

4.1 Reconstruction of radial velocity

In Fig. 2 a V-PPI with data gaps is shown as an example for a fragmented measurement. To analyze the performance of
PINN, we divided each V-PPI in 36 sectors, deleted the measured data, reconstructed these sectors and compare the results
with the measurements (if any present). Therefore, PINN uses 36 LOS (red dashed lines) as boundary conditions to reconstruct
the complete V-PPI. In case of small data gaps inside the boundary LOS, we applied standard interpolation and extrapolation
methods. Note, the measurements contained no disturbances but only incomplete PPI's (as can be seen in Fig.2 (left)).
However, if disturbances are detected, it is easy to choose an adjacent undisturbed LOS in order to reconstruct the sectors
containing corrupted data, because most disturbances (e.g. from wind turbines) occur always at the same positions. Therefore,
the localization and reconstruction of the corresponding scctors is manageable.

20

d speed (mis)

radial wind speed {m/s)

Figure 2: X-Band Radar Example 3°V-PPI, 30/03/2015, 214:20hrs @ Braunschweig; Left: Measurement with boundary
LOS (red), right: Reconstructed PPI using PINN
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In Fig. 2 (right) the corresponding V-PPI reconstructed using PINN is depicted. To assess the performance of the PINN
algorithm, samples of more than 900 cases were selected where a V-PPI contained at least 60% of data. The reconstructed
radial velocities V, have been evaluated by the absolute errors (ABE) of their differences to the actual measurements on a
range gate basis:

ABE = V_ (reconstructed) — V, (measured) (4)

As described in the introduction, PINN must be retrained with every new set of boundary LOS. To accelerate PINN, two
techniques, Transfer Learning (TL) and Meta Learning [9], were investigated. TL is a machine learning technique that uses a
previously trained model for a specific purpose as the starting point for a new, yet related model. This approach means that
what has already been learnt from a trained network can be re-used for a new project. Meta Learning is a class of machine
learning methods aiming to quickly adapt a learning model to new tasks. To this end, machine learning typically extracts
important meta-information, such as the initial values of model parameters and other hyperparameters, from a set of training
tasks that are correlated with new, unseen tasks. Both techniques eliminate computationally intensive and time-consuming
activities required for training a new neural network from scratch. Fig. 3 shows the fitting curves of the histogram distributions
for the ABE (left) and the run-time (right). The results show that PINN has an error of approx. 2 m/s in 97% of cases. By using
Meta and TL methods, this error increases, whereas the Meta method performs better than the TL method. However, the run-
time accelerations are enormous; if PINN still requires approx. 15 min on average, the use of TL and Meta reduced it to 2.94
min and 0.14 min respectively.
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Figure 3: Fitting curve of the histogram distribution of the ABE calculated for almost 7.5Mio range gate (left) and the
calculation time (right) for PINN algorithm (blue curves), for PINN algorithm with Meta Learning (red curves) and Transfer
Learning (green curves) techniques.

4.2 Comparison with Doppler lidar data and evaluation of 3D wind components

42.1  Comparison with Doppler lidar data

The PINN algorithm was originally tested on Doppler lidar (DL) data, because of the high data availability. Fig. 4 (left)
shows the ABE between measurement and reconstruction for almost one year of measurement data for a 35° azimuthal single
sector. In contrast to the radar use case in section 4.1, the azimuth angle is larger because of the smaller operational range.
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Figure 4: Histogram of the ABE (left). Fitting curve of the histogram distribution of the absolute error (middle) and the
calculation time (right). Using PINN (blue curve), PINN with Meta Learning (red curve) and PINN with TL (green curve)
calculated for subset of cases.

4.2.2  Evaluation of the 3D wind components

In 2024, comparative measurements were carried out between PTB's bistatic wind lidar as a reference instrument and
LEONARDO’s SKIRON-P scanning wind lidar. Both systems were located 1100 m apart and aligned to the capture the same
measurement volume. For the time-averaged comparison of vectors, the NS equations in Cartesian coordinates were used to
determine time-averaged velocity vector fields. For the analysis, PINN reconstructs an empty sector of 30° where the LOS in
the middle corresponds exactly to the overlapping measurement volumes of the PTB lidar. Fig. 5 shows the time series
comparison between the V-component (left), the U-component (middle) and the W-component (right) between the PTB
measurements and the reconstruction PINN algorithm for the overlapping range gate for almost one week. The result shows
that the U and the V component are reconstructed with an acceptable absolute error of ~1 m/s whereas the W-component
shows a larger discrepancy of 1.38 m/s.
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Figure 5: Time series plot of the U, V and W wind components. Blue curve PTB lidar, red reconstructed by PINN.

5 Conclusions & Future research

In this publication, a physics-informed machine learning algorithm has been used to reconstruct data gaps of wind fields
measured by an X-Band weather radar and a 3D scanning Doppler lidar. The results show that the reconstruction of 10° azimuth
sectors for the radar with an operational range of 75 km and of 35° azimuth sectors for the lidar with a range up to 15 km
features absolute errors of less than £2 m/s in 97% and 98%, respectively, of all cases. There are differences in absolute error
and runtime between lidar and radar data when applying Meta and Transfer Learning techniques to achieve real-time
performance. For radar, the error increases significantly when using TL, whereas TL has only a marginal impact on the
accuracy of the reconstruction results for the lidar. The acceleration factor for the run-time showed a significantly higher value
(factor 107) for radar than for lidar (factor 20) when applying the Meta learning method, whereas the TL method showed an
equal acceleration of a factor of five for both. This needs to be investigated in the future. However, applying the Meta learning
method on radar data could achieve real time processing (by using ordinary hardware like an Intel Xeon 3,8 GHz processor
with a single CPU).

PINN offers the possibility to reconstruct the full wind vector by taking only the radial velocity as boundary conditions into
account. For reconstructing the velocity components, PINN showed an absolute error of 1 m/s for the U and V components
compared to the reference device, which seems to be acceptable for most applications, especially by considering that no data
is available in these sectors. However, the W component showed a larger absolute error and highly fluctuates over time. This
behavior and the higher absolute error caused by applying Transfer Learning on radar data will be investigated in the future.
Another future task is the analysis of the reconstruction performance of larger azimuthal sectors.
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1 Introduction

The availability of low-cost electronic components for microwave signal processing has created new interest in the use of
multistatic radar for weather observation [e.g. 1,2]. Multistatic radar networks consist of a single transmitting radar and
multiple receivers positioned some distance away from the transmitter and each other. The remote receivers observe the
forward scattering of the transmitted pulse by weather phenomena. By combining observations from multiple receivers, it is
possible to obtain additional information on the scatterers. For example, multiple components of velocity can be obtained
from Doppler measurements [e.g. 3, 4]. The use of a single transmitter and multiple passive receivers offers benefits over
multiple independent radars both in terms of cost savings and in temporal synchronization of the measurements [3].

The Microwave Remote Sensing Laboratory at the University of Massachusetts Ambherst, in collaboration with teams from
Stony Brook University/Brookhaven National Laboratory (SBU/BNL) and the University of Oklahoma, are leveraging the
SBU/BNL Skyler-2 X-Band mobile phased-array radar to construct a multistatic radar network using the phased-array as the
transmitter. Skyler-2 is a low-power, dual-polarized, phased-array developed by Raytheon Technologies, now Collins
Acrospace [5]. The multistatic network is to be used to study deep convection in storm cells. The rest of this publication will
discuss the expected and experimental performance of the Skyler-2 radar used in conjunction with a single low-gain passive
receiver. Section 2 discusses the theory behind bistatic scattering and wind retrieval from bistatic networks and the design
parameters of the proposed bistatic network. Section 3 presents experimental results using a single receiver and the Skyler 2
transmitter. Section 4 discusses the conclusions of this paper and further work.

2 Methodology

2.1 Bistatic Weather Observation Theory

While the principles for weather observation using a bistatic radar network are similar to the traditional monostatic (single
radar receiver and transmitter) case, the bistatic geometry introduces changes to the observation volume, scattering
characteristics, and observed Doppler velocity depending on the observation angle of the target. Particularly of interest in this
study is the interaction of the retrieved Doppler velocity and the observation angle, as additional velocity components can be
extracted from the forward scattered signal [1-4]. In order to analyze these effects, it is necessary to understand the nature of
the signal being measured by the receiver.

The received power P, from a bistatic network can be described by an extension of the standard radar equation for monostatic
radar (1) [6].
_ GeAer NpiV

Pr - t*(4n')2RgR$ (1)
Where P, is the transmitted power, G, is the transmitter gain, A, is the effective area of the receiver, n;; is the bistatic
volume reflectivity, V is the observation volume, and R; and R, are the distances from the target to the transmitter and to the
receiver, respectively. In addition to separate path lengths from the transmitter and receiver and the separate gains of the two
antennas, this bistatic formulation also results in changes to 1p,; and V.

In the traditional monostatic radar case, the volume observed by the radar consists of the intersection of a sphere formed by
the range resolution of the transmitted pulse and the beam pattern of the radar [7]. In the bistatic network configuration, the
transmitter and receiver are the two foci of a constant delay ellipsoid formed by the sum of the range from the observation
volume to the transmitter R, and the range from the observation volume to the receiver R, [3]. The observation volume is then
further constrained by the intersection of the transmitter and receiver antenna beam patterns [8]. Thus, the size and shape of
the observation volume varies with the observation direction relative to the baseline, as both the intersection of the beam
patterns and the range resolution vary with the observation direction [3]. Figure 1 shows an example of how the constant delay
ellipsoids and the receiver and antenna beam patterns combine to create a resolution volume. According to Willis [9], the range
resolution as a function of the bistatic angle a and pulse duration 7 can be approximated as (2), which reduces to the typical
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Figure 1: Cross-section of bistatic radar geometry. Resolution volumes are formed by the intersection of the receiver beam
(solid black lines), transmitter beam (dashed black lines), and constant delay ellipsoids (colored ellipses). The bistatic
velocity vy,; is normal to the ellipses.

monostatic range resolution equation for a = 0°.

CcT

AR ~ ———— 2
2 cos (5) ( )

The bistatic configuration also results in changes to the Doppler velocity measured by the bistatic network. In the monostatic
configuration, the measured velocity is the projection of the target’s velocity along the range direction of the radar [7]. The
velocity measured by the bistatic network reflects the projection of the target’s velocity along the bisector of  (Figure 1) [4],
which is a vector normal to the surface of the constant delay ellipsoid [3]. As the location of the observation volume changes,
the distance between the inner and outer delay ellipsoids varies with the bistatic angle (see Figure 1) [9]. The apparent velocity
v, seen by the bistatic receiver is related to the true velocity of the target along the bistatic angle bisector vp; by (3) [4].

V, = Vp; COS (%) 3)

While the receiver sees the projection of velocity along the bisector of the network, the traditional monostatic velocity can
still be obtained from the transmitting radar. It is here that the benefits of the bistatic network for velocity measurement
become apparent, as the additional bistatic velocity measurement can be used to derive wind fields [1-4].

The volume reflectivity 1,,; of a target also varies with the angle between the electric field and the scattering direction y [6].
For Rayleigh scattering targets such as most rain at X-Band, Tulu provides a modification to the standard equation for volume
reflectivity which incorporates y, the operating wavelength A, the dielectric factor K, and the reflectivity factor Z (4) [6].

5
Npi = 55 |KI?Zsin® (x) “

Based on this relation, Wurman, Heckman, and Boccippio [3] concluded vertical polarization was more effective in minimizing
nulls as a result of y for measuring horizontal velocities with bistatic networks.

2.2 Implemented Bistatic Network

The bistatic network used for this experiment is shown in Figure 2. It consists of the Skyler-2 X-Band mobile phased-array
radar operating as the transmitter, and a single passive receiver constructed by the University of Massachusetts Amherst. The
receiver uses a low-gain patch antenna developed by the University of Oklahoma. The technical parameters of the network are
presented in Table 1.

Table 1: Bistatic Network Characteristics

Transmitter Antenna Gain ~35dB
Receiver Antenna Gain 16.6 dB
Center Frequency 9.43 GHz
Transmit Power <250 (W)
Polarization Vertical
Pulse Width 1.0 us
Pulse Repetition Frequency 2.404 kHz
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Figure 2: Implemented Bistatic Network Configuration. Adapted from [11].
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Figure 3: Theoretical minimum reflectivity factor (Zmin) for the bistatic network in a pseudo-monostatic configuration with
a 1.0us CW pulse for 3 dB SNR. Solid lines indicate the receiver beam, and dashed lines indicate transmitter beams

Synchronization of the receiver and the transmitter is accomplished using a pair of Ettus Research USRP N210 Software
Defined Radios (SDR) and GPS disciplined oscillators (GPSDOs), similar to the system implemented by Wurman, Heckman,
and Boccippio [3]. The GPSDOs provide synchronized timing data and fix the reference oscillators of both systems to the GPS
Pulse-Per-Second (PPS) signal. A local copy of the scan parameters is stored on both the transmitter and the receiver, and a
start time is automatically coordinated using a network link between the systems. Once the start time is established, both
systems issue timed commands to the N210 SDRs to ensure simultaneous transmission and reception times.

For this experiment, the transmitter and receiver are separated by a baseline of 30 m and observe a target region located
approximately 90° off the baseline. In this configuration, the bistatic angle « for targets as close as 100m (less than the range
resolution of the radar) is 17°, resulting in a deviation from the monostatic case of 1.1%. Therefore, this configuration can be
modeled as a monostatic configuration for this test with an expected error of < 1.1% for any targets beyond the first range
resolution. Figure 3 shows the expected minimum reflectivity factor, Zmin, required to achieve a signal to noise ratio (SNR)
of 3 dB as a function of the target position in the vertical plane along the viewing direction in vertical polarization in this
pseudo-monostatic case using a continuous wave (CW) pulse with a width of 1.0 us.

04 06 08

Range (km)

(a) (b)

Figure 4: Reflectivity factor values during the moderate rainfall event for Skyler-2 (a) and for the bistatic receiver (b),
filtered to exclude points with SNR < 3 dB.
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Figure 5: Reflectivity factor values obtained using the bistatic receiver versus values obtained using Skyler-2.
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Figure 6: SNR of observations during the moderate rainfall event for Skyler-2 (a) and for the bistatic receiver (b).

3  Experimental Results

The bistatic network was tested by observing a moderate rainfall event in Amherst, MA, USA using the configuration discussed
in Section 2. A Range-Height Indicator (RHI) plot was obtained at elevation angles from 20° to 30°. The scan was performed
using a 1 us continuous wave (CW) pulse pattern at a Pulse Repetition Frequency (PRF) of 2.404 kHz. Figure 4 shows the
measured reflectivity values from both Skyler-2 and the bistatic receiver. As seen in Figure 5, the values obtained from the
receiver agree with the values from Skyler-2 within an RMS error of 3.6 dBZ.

Figure 6 shows the SNR of the received echoes in the RHIs from Skyler-2 and the bistatic receiver. The SNR observed by the
bistatic receiver is approximately 15.6 dB lower than the corresponding SNR for Skyler-2. The theoretical difference in the
SNR between the two systems should be approximately equal to the difference between the Skyler-2 antenna gain and the
bistatic receiver antenna gain, 18.4 dB, assuming that the noise figures of both systems are equal.

For reflectivity factor values from 30-40 dBZ as seen here, the maximum observation range for the bistatic receiver should be
on the order of 1km (Figure 3). Figure 4 and Figure 6 show that the SNR of the receiver remains above the 3dB threshold
until about 1km, indicating that the experimental performance of the system is similar to the theoretical performance.
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Figure 7: Doppler velocity RHI from (a) Skyler-2 and (b) the bistatic receiver, filtered to exclude points with SNR < 3 dB.

ERAD 2024 Abstract ID 352 85



ERAD 2024 — 12 EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY

6 i T T 7 8
RMS(m/s): 2.282 Fa
| Bias(m/s): —1.867 ]

4" Rho: 0.818

6=

»

1
Counts
=
T

Ry Velocity (m/s)

)

Skyler2 Velocity (m/s)
Figure 8: Scatter plot of precipitation velocities measured using the bistatic receiver and Skyler-2.

Doppler velocity measurements were acquired using the pulse-pair method. To correct phase offsets between the transmitter
and the receiver, the center of the transmit pulse as observed by the receiver was used to set the zero-phase point of the receiver.
The RHI plots for Doppler velocity obtained using this method are shown in Figure 7.

Figure 8 shows a scatterplot of the velocities measured using the bistatic receiver and Skyler-2 from the RHIs shown in Figure
7. The velocities measured using the bistatic receiver have a bias of -1.867 m/s relative to those measured using Skyler-2, with
an RMS error of 2.28 m/s.

4 Conclusions

The bistatic network consisting of the Skyler-2 X-Band mobile phased-array radar and a low gain bistatic receiver was tested
in a pseudo-monostatic configuration during a moderate precipitation event. The system achieved the expected SNR
performance in this configuration. Reflectivity values observed by Skyler-2 and the receiver were in a similar range.

Doppler velocity measurements obtained by the receiver and Skyler-2 likewise were similar, with the receiver underestimating
the velocity relative to Skyler-2 by 1.86 m/s. This value is larger than the bias observed by Byrd, Palmer, and Fulton [1] and
by Friedrich and Hagen [12]. The overall RMS error of 2.28 m/s is within the ranges reported by [1] and [12]. It should be
noted that the sample size of velocities measured was small, and additional observations may result in a lower overall error.

Further work on this topic includes improving the timing and frequency synchronization of the Skyler-2 and the bistatic
receiver, as well as achieving sufficient synchronization such that the receiver does not need to observe the transmitter pulse.
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1 Introduction

Extreme precipitation events are significant natural hazards that impact economies and populations globally (Calvin et al.,
2023). These events are challenging to predict due to their high spatial and temporal variability, leading to increased
uncertainties in flood forecasts, especially in urban catchments (Bruni et al., 2015; Willems et al., 2012). As climate change
intensifies extreme weather events, accurate flood forecasting and early warning systems become crucial. Precisely estimating
severity and associated uncertainties is essential for mitigating damages and enhancing preparedness, especially in urban areas
characterized by high population density and critical infrastructure.

Traditional flood forecasting relies on deterministic rainfall estimates, which often fail to capture the inherent uncertainty
associated with spatial and temporal precipitation patterns. In contrast, probabilistic rainfall forecasts offer a deeper
understanding by accounting for occurrence variability and confidence intervals (Cloke & Pappenberger, 2009). However,
translating these probabilistic forecasts into actionable information for flood risk management and impact-based flood
warnings is a challenge (Dale et al., 2014).

The main objective of this research is the integration of operational and forecasting radar products, provided by the Royal
Meteorological Institute of Belgium (RMIB), into a distributed urban-hydrological model towards the implementation of an
impact-based flood warning system (Reinoso-Rondinel et al., 2024). Our research couples state-of-the-art hydro-
meteorological radar measurements (Goudenhoofdt & Delobbe, 2016) and nowcasts adapted from pySTEPS (Pulkkinen et al.,
2019) with hydrologic and hydraulic model using Delft-FEWS (Werner et al., 2013) and Python. A distributed urban-
hydrological model is designed with EPA SWMM (Rossman, 2017; Rossman & Huber, 2016) and TELEMAC-2D (Hervouet,
2007) and by integrating probabilistic rainfall forecasts into these models, we aim to improve flood predictions in urban areas.

The next sections will describe in more detail the models and datasets used, as well as preliminary results and conclusions
for the flood event occurred on July 4", 2021, in Antwerp, Belgium.

2 Data and methods

In this study, we present a comprehensive methodology for the integration of radar observations and probabilistic rainfall
forecasts (6 h lead time) to a distributed urban-hydrological model to assess urban flood risks. Our approach combines different
hydrologic and hydraulic software using Python and Delft-FEWS. We detail the steps taken to achieve the flood predictions,
emphasizing the importance of replicability using free and/or open-source software.

2.1 Integration platform

Delft-FEWS, which was developed by Deltares, serves as a powerful platform for visualization, analysis, and integration of
diverse datasets and models. Its flexibility, compatibility, and modularity allow seamless collaboration with Python, which is
used for downloading, pre-processing, and post-processing data required in the hydrological and hydraulic models. Together,
both create our integration platform to download and process radar rainfall data and radar nowcasts from RMIB, pre-process
input data, post-process, and visualize results for SWMM and TELEMAC-2D, as shown in Figure 1.
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Figure 1: Integration platform of datasets and models.
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2.2 RMIB radar products

RMIB delivers a set of Quantitative Precipitation Estimation (QPE), forecasting and nowcasting operational products. The
RADCLIM product is obtained after merging the real-time RADQPE product, observed by the operational C-band weather
radar network in and near Belgium, with an extended network of rain gauge measurements. This product provides QPE fields
at 1 km resolution for 5 min and 1 h accumulation periods.

The seamless precipitation forecast product (pySTEPS-BE) is achieved by blending the radar-based nowcast using the
STEPS-BE approach (Bowler et al., 2006), which is a probabilistic rainfall nowcast of 48 members every 5 min up to 2 h lead
time, with precipitation fields from the deterministic numerical weather prediction (NWP) ALARO/AROME models. The
blending is performed by each cascade level with skill-dependent weights in the nowcast, NWP, and stochastic noise (Imhoff
et al., 2023). This is a pre-operational RMIB product developed based on the open-source Python library pySTEPS, spanning
up to 12 h lead time and 48 ensemble members (De Cruz et al., 2024).

2.3 Hydrologic and hydraulic models

Our distributed urban-hydrological model combines a 1D pluvial network model using EPA SWMM with a 2D mesh for
streets and inundation areas built in TELEMAC-2D. This coupling captures the urban hydrological processes and the
hydrodynamic interactions between the drainage network and surface water to improve the flood risk analysis in urban areas.
Figure 2 shows the interactions between the data and models.

SWMM is a hydrologic-hydraulic model, mostly used in urban areas, for single-event or continuous simulations. The model
operates on a collection of sub-catchment areas that receive precipitation and route runoff through the pluvial network. Here,
only the nodes discharge is used as input for the TELEMAC-2D model.

TELEMAC-2D is an open-source two-dimensional hydrodynamic model used to simulate free-surface flows in horizontal
space using a triangular mesh. It solves the shallow water equations, also known as the Saint-Venant equations, using either
the finite-element or finite-volume method and it computes water depth and velocity at each point of the mesh. In this case,
the model was modified to compute the backflow to the drainage system according to the orifice or weir equation, depending
on the water depth at each timestep. This is only to simulate the backflow effect and loss volume from the surface when there
is no inflow from each node, but no further simulation or adjustment is made in the SWMM model.

RMIB Radar
Rainfall

Hydrological Urban
Model (SWMM)

2D Hydrodynamic
Model (TELEMAC)

Nodes Discharge Water Depth

Figure 2: Models and data flow diagram.

2.4 Case study

The study area is the city of Antwerp, Belgium, located in the banks of the river Scheldt. It is highly prone to urban and
fluvial floods, which could cause large socio-economic impacts. The total area of the urban catchment is around 6.5 km? with
a mean slope of 0.028. The pluvial network of the city is divided in 5 zones with a total length of 1012 km with 393 control
structures, and pipes or channels dimensions up to 12 m. About 60,000 subcatchments and 21,000 nodes are considered. Figure
3 shows the model extent and the drainage networks used for the analysis.
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Figure 3: Antwerp model extent and drainage networks.

Due to scarce hydrological data in the urban area, the model is validated using a collection of reports of flood interventions
by the Fire Brigade of the city of Antwerp. The model uses various precipitation events from RADCLIM to generate a flood
map and compares it with the map of reported Fire Brigade interventions. After model validation, the probabilistic rainfall
forecast is used to generate an ensemble hydrological forecast and estimate flood uncertainties for the impact-based flood
warning system. Figure 4 shows the flood reports collected (around 180 in Antwerp) during the flood event on July 4™, 2021.
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Figure 4: Flood interventions from Fire Brigade collected in Antwerp during the flood event on July 4", 2021.
3 Results

3.1 Rainfall forecast

Probabilistic rainfall forecasts with different starting times (T0) were compared with observed precipitation for the event
occurred on July 4%, 2021, as shown in Figure 5. Even at 1 h nowcast, it is possible to notice differences in the development
of the spatial and temporal precipitation patterns and its intensities.
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Figure 5: Comparison of RADCLIM and pySTEPS-BE at 12 pm starting at different T0 over Belgium during the flood
event on July 4", 2021.

Figure 6 shows the time series comparison in one pixel over Antwerp. In the nowcasts started at 8 am, 9 am and 10 am,
there is a lag of around 2 or 3 h between the observed precipitation peak and the ensemble forecast, but some members can
predict the intensity, which could be used to issue a first preliminary warning. It is until the nowcast at 11 am, which is around
30 to 40 min before the observed peak, that the time and peak intensities are better predicted, but they still overestimate the
duration of the event. These differences, combined with the hydrologic-hydraulic model uncertainties, create higher
uncertainties in the ensemble hydrological forecast to be used in an impact-based flood warning system.

3.2 Flood forecast

After simulation of the observed precipitation with RADCLIM and the blended nowcasts in the hydrologic-hydraulic model,
it was possible to obtain conventional and probabilistic flood hazard maps with a resolution of 100 m. If these results are
compared with the flood reports map, as shown in Figure 7, it is possible to identify certain similarities on the flood prone
areas in the city of Antwerp. Many of these flood prone areas coincide with the flood hazard maps provided by the authorities
in the Flanders region (not shown).
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Figure 6: Time series comparison of radar observations (P.radgpe and P.radclim) and blended nowcasts (P.stepsnwp)
with uncertainty bands started at different T0 over Antwerp during the flood event on July 4", 2021.
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Figure 7: Comparison of flood reports map (red) with flood extent obtained with hydrologic-hydraulic model (blue) for
observed precipitation (left) and blended nowcasts started at 11 am (right).
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These similarities in the flood extent maps obtained with observed precipitation and blended nowcasts are good preliminary
results, but the latter have bigger extent and last longer due to the overestimation of the event duration from the precipitation
nowcasts and the variability between the ensemble members. Figure 8 shows the water discharge in one node of the SWMM
model obtained with observed precipitation and uncertainty bands from the blended nowcasts started at 11 am.
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Figure 8: Comparison of discharge in one node of SWMM model obtained with observed precipitation (Q.sim) and
uncertainty bands from the blended nowcasts started at 11 am (Q.sim.nwp).

4  Conclusions and perspectives

Although this research is in its early stages and further investigation is needed to implement the best forecasting scheme,
modelling, and operational practices, preliminary results for the city of Antwerp are shown. It is important to note that
uncertainty levels are high and it is required to validate the blended nowcasts and hydrological-hydraulic models with different
statistical metrics for several precipitation events to assess their accuracy and reliability.
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It is worth to mention that the coupling between SWMM and TELEMAC-2D models using Delft-FEWS and Python is a
good manner to assess urban flood hazards with free and/or open-source software. The main limitation for its operational use
would be the required computational power, which results in long simulation times. However, this will serve as the foundation
for developing a Physically Informed Data-Driven Model for a rapid real-time impact-based flood warning system, spanning
both urban and larger scales.

In summary, our study tries to fill the gap between rainfall forecasting and hydrological-hydraulic modelling for its future
implementation in a warning system. Rather than focusing solely on water levels, we aim for an impact-based flood warning
system, which will consider the potential consequences of flooding on buildings, infrastructure, and communities. By using
probabilistic approaches, it is possible to assess uncertainties associated to every step of the process. Probabilistic flood hazard
maps could later be combined with depth-damage curves to estimate the probable damage costs of a flood event. This would
give decision-makers better information about the possible outcomes and allow them to make informed decisions regarding
evacuation, resource allocation, and emergency response to mitigate flood risks effectively.
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1 Introduction

In recent years, hail-related damage has rapidly increased worldwide due to climate change, making the development of
hail forecast technology urgent. In the development of hail forecasting technology based on conventional meteorological
radar data, there has been a lack of a sufficient number of fixed observation points capable of detecting hail, which is a short-
term and localized weather phenomenon. This limitation has made it difficult to evaluate and improve the accuracy of hail
forecasts. Therefore, we propose a new method (T-SHIBA: Two-Stage, Hydrometer classification and forecasting Induced
By SNS, Algorithm), which utilizes the rapidly expanding use of social media platforms (SNS) in recent years. Through
SNS posts by the general public about hail events, we identified approximate hail locations and times, enabling the
evaluation and improvement of hail forecasting technology. This method consists of two stages: the first stage involves
hydrometeor classification in three dimensions based on observations from meteorological radar, and the second stage
forecasts hail locations in two dimensions (latitude and longitude) based on the results of the first stage.

This report presents the method for hydrometeor classification in the first stage. The forecast method for the second stage
will be reported separately. To encourage user actions to reduce hail damage based on forecast results, it is essential to
increase the reliability of these forecasts. Therefore, reducing false alarm rates is crucial, even if it means decreasing the
accuracy of hail forecasts.

In traditional particle classification methods, torrential rain events without hail and hail events are grouped into the same
category. This results in forecasting hail even in cases of torrential rain without hail, leading to a high false alarm rate. To
address this issue, we created training data exclusively for torrential rain events without hail from SNS posts where no hail
was reported. We applied a Gaussian mixture model using Bayesian inference to separate the hail and torrential rain
categories. This approach allows us to build a classification model in a data-driven manner, eliminating the need to
determine thresholds for each category based on an in-depth understanding of meteorological radar technology. As a result,
we have introduced a hydrometeor classification method with distinct classifications for hail and torrential rain.

2 Methodology

In the last few decades, a number of researches on hydrometeor classification using polarimetric radar have been conducted.
In the early years, decision-tree method was used in order to classify hydrometeor types. Subsequently, fuzzy-based method
has been the dominant method for hydrometeor classification. In these methods, dual-polarization information such as Zh
(radar reflectivity of horizontal wave), Zdr (differential reflectivity), phv (correlation coefficient), and Kdp (specific
differential phase), along with variables such as temperature and humidity, are considered. To classify hydrometeor types
from polarimetric radar data, fuzzy-logic hydrometeor classification algorithm is adopted, classifying hydrometeor types into
10 categories; 1)drizzle, 2)rain, 3)wet snow, 4)dry snow, 5)ice crystal, 6)dry graupel, 7)wet graupel, 8)small hail, 9)large hail
and 10)rain and hail. These techniques include studies conducted using S-band and C-band polarimetric radars[1], and
studies conducted using X-band polarimetric radars[2].Although, X-band radars are significantly affected by attenuation
behind heavy precipitation, they have the advantage of being able to detect weak precipitation (lower reflectivity) , such as
drizzle, snow and ice crystal, than S-band or C-band polarimetric radars.

In addition to methods using fuzzy logic, approaches employing Bayesian inference are also commonly applied[3].
Although methods using Bayesian inference demonstrate better discrimination accuracy compared to methods using fuzzy-
logic, they present a challenge in that the workload for creating multidimensional probability density distribution models is
considerably greater than that for developing membership functions in fuzzy logic. Furthermore, Bayesian inference
constitutes ‘supervised learning’ in machine learning, necessitating a substantial amount of labeled training data for
classification purposes. However, the creation of labeled training data for particle discrimination using dual-polarization
information has been challenging due to the limited number of samples available for creating detailed training data, as it was
created by comparing ground observations such as optical disdrometers and high-altitude observations such as video sondes.
In response to this, preliminary studies have been conducted to create labeled training data from observation data through
cluster analysis of observation data. However, these methods have been limited by poor particle discrimination accuracy and
the fact that the work is done manually, resulting in a significantly small number of labeled training data samples.
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In our study, we focus particularly on hail within hydrometeor classification and propose a new method for hydrometeor
classification with the goal of forecasting hail. This hydrometeor classification method is used in the first stage of our
proposed new hail forecasting method (T-SHIBA: Two-Stage, Hydrometer classification and forecasting Induced By SNS,
Algorithm), which takes three-dimensional observation data from an X-band polarimetric radar as input and outputs the
results of hydrometeor classification in three dimensions (Fig. 1). In the second stage, the method predicts the two-
dimensional locations of hail in terms of latitude and longitude based on these three-dimensional hydrometeor classification
results. In this hail forecasting technology, we utilize social networking services (SNS), which have rapidly expanded in
recent years, and evaluate and improve the hail forecasting technology by identifying the approximate hail locations and the
rough times of hail through SNS posts about hail made by the general public.
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Figure 1: our proposed new hail forecasting method (T-SHIBA)

2.1 Our hydrometeor classification method

In our proposed new method for hydrometeor classification, we improve upon the conventional method with an X-band
polarimetric radar using fuzzy logic to classify hydrometeor types into 10 categories; 1)drizzle, 2)rain, 3)wet snow, 4)dry
snow, 5)ice crystal, 6)dry graupel, 7)wet graupel, 8)small hail, 9)large hail, 10)rain and hail. Our aim is to establish a method
of hydrometeor classification that can reduce the false alarm rate in hail forecasting. In the conventional method, torrential
rain without hail is classified as the rain and hail, so even in the case of weather with only torrential rain and no hail, hail is
classified, resulting in a high false rate in hail forecasting. Therefore, in our method, we aim to reduce the false rate by
adding a category of only torrential rain to the conventional classification, classifying hydrometeor types into 11 categories;
l)drizzle, 2)rain, 3)wet snow, 4)dry snow, 5)ice crystal, 6)dry graupel, 7)wet graupel, 8)small hail, 9)large hail, 10)rain and
hail, and 11)torrential rain.

2.2 Dataset

To classify hydrometeor types, we used the data observed by conventional radars in Japan include the X- and C-band
parabolic dual-polarization radars that comprise the Ministry of Land, Infrastructure, Transport and Tourism’s eXtended
RAdar Information Network (XRAIN) (Fig. 2(a)). In this study, we used observational data from five X-band parabolic dual-
polarization radars deployed in the Kanto region of Japan (Kanto, Shinyokohama, Funabashi, Ujiie, Yattajima) (Fig. 2(b)).
We performed a three-dimensional synthesis of each radar data (Zh, Zdr, Kdp and phv) using Cressman interpolation and
converted it into orthogonal coordinates with a resolution of 250m. Furthermore, for temperature and relative humidity, we
used values extracted from MSM data that are numerical weather forecasting data using the Japan Meteorological Agency
(JMA) meso-scale model.
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Figure 2: Locations of XRAIN MP radars
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3 Gaussian Mixture Model using Bayesian Inference

3.1 Theory and Implementation

The hydrometeor classification algorithm in this study takes four polarization parameters (Zh, Zdr, Kdp, and phv),
temperature, and relative humidity as inputs, and outputs classification results for 11 categories; 1)drizzle, 2)rain, 3)wet
snow, 4)dry snow, S)ice crystal, 6)dry graupel, 7)wet graupel, 8)small hail, 9)large hail, 10)rain and hail and 11)torrential
rain. To perform this classification, we adopted a mixed Gaussian model using Bayesian inference. In a conventional mixed
Gaussian model, once a model is created, it is necessary to relearn from all the accumulated data again if additional learning
data is obtained, which requires always saving all data. However, in this study, we used a sequential update type of mixed
Gaussian model using Bayesian inference, eliminating the need to save past data. The use of Bayesian inference does have
the disadvantage of requiring mathematical knowledge. However, it has many advantages such as being able to handle the
uncertainty of the target, naturally incorporating available knowledge, and being less prone to overfitting. Therefore, we
judged that it is suitable for adding new categories in a data-driven manner this time, and adopted this method. A mixed
Gaussian model is a clustering method that analyzes data under the assumption that it is generated from multiple normal
distributions. It estimates which normal distribution each data point belongs to by varying the mean and variance of each
normal distribution. In this study, we apply this mixed Gaussian model to supervised learning classification problems.

The graphical model of the assumed Gaussian mixture model is shown in Fig. 3. We assume that there are N independent
samples of D-dimensional data, each accompanied by corresponding labeled data S. In our case, D=6, which corresponds to
input data consisting of four polarization parameters, temperature, and relative humidity, while S corresponds to output data,
which are labels for 11 categories. Here, s is a K-dimensional vector where K is the number of categories; it contains a 1 for
the category to which it belongs and Os for all other elements. For our hydrometeor classification model, since there are 11
categories, K equals 11, resulting in an 11-dimensional vector. To sample this s, we consider a categorical distribution with
parameter 7, and a model that is a mixture of K Gaussian distributions. We denote the mean of each Gaussian distribution as
Wi, ..., Uk, and the precision matrix (the inverse of the covariance matrix) as A, ..., Ak. In situations where we do not deal
with each parameter individually, for simplicity of notation, we denote all parameters of these Gaussian mixture distributions
collectively as ®. Furthermore, in the framework of Bayesian inference, parameters such as the parameter m of the
categorical distribution and the p, A of each Gaussian distribution are considered to follow a probability distribution. Here,
we assume that each follows a conjugate prior distribution. Parameters such as the parameter 7 of the categorical distribution
and the p, A of each Gaussian distribution follow the distributions shown in equations (1) and (2), respectively. Here, dir(.)
indicates a Dirichlet distribution, and NW(.) indicates a Gaussian-Wishart distribution. a, m, 8, v, W are hyperparameters,
and m is set to a value obtained from insights in the fuzzy logic model. Therefore, considering the joint distribution of the
random variables X, S, m, ®, we get equation (3). Here, N(.) indicates a Gaussian distribution, and Cat(.) indicates a
categorical distribution.

Set of N D-dimensional vectors X={xs, Xy}
Set of N 1-dimensional vectors (label) S={s;,",sx}
Test data x;

+Se
All parameters of the Gaussian mixture distribution
@ (average vecotr:u, Precision Matrix: A)
All parameters of the Dirichlete distribution
m

Figure 3: The graphical model of the assumed Gaussian mixture model
p(m) = dir(r|a) (1)
p(uk, Ar) = NW (g, A, m, 3, v, W) )
(X,5,,8) = p(XIS, 0)p(SIMP(@)p(m) = (TTIL, [TEes Nl A" ek Cat(sic M HITE <y p (i ADIP() (3)

From equation (3), we derive the posterior distribution of the parameters and the predictive distribution, which is the
probability distribution of (s«) given new data (x«). In this case, since we have adopted a conjugate prior distribution as the
prior distribution, both the posterior distribution and the predictive distribution can be analytically obtained, and ultimately,
equation (4) is derived. When we modify equation (4) so that each hyperparameter can be updated sequentially, we obtain
equation (5).
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The predictive distribution is used for hydrometeor classification, so it is necessary to find the predictive distribution of (sx)
given new data (x«). This predictive distribution is given by equation (7). If we transform equation (6), the update formula
for the predictive distribution when the nth data is obtained is given by equation (7). Here, ( St(-) ) represents a
multidimensional Student’s t-distribution, and D represents the dimension of x. Using equation (7), we calculate the
probability of each classification and output the classification with the highest probability.

P (54X, X,S) _ P(xs,|5:,X,S)P(X|5+,S)P(5:,5)P(S) (6)
P(x.XS) P(x..X.5)

P(s,|x,,X,S) =

P(s.5 = 1]%.,X, §) o 7, xSt (x*|nﬁn‘k,%wn ol=D+ ﬁn‘k) ™)
nk

3.2 Training data

To use the hydrometeor classification model shown in equation (7), training data is required. Therefore, first, in order to
utilize the knowledge of the conventional fuzzy logic model, we sampled data from each category from the fuzzy logic
model and created training data. For this sampling, we used the MCMC method (in this case, we applied the Metropolis-
Hastings method, which is one of the MCMC methods) to sample the training data for the conventional 10 categories (Fig. 4).

To create training data for learning a new category of torrential rain without hail, we attempt to extract input data that is
strongly presumed to be only torrential rain without hail from the input data classified as rain + hail in the conventional
fuzzy theory model. First, we input data from days of torrential rain observed in Kanto region in August 2021, when there
were no social media posts about hail, into the conventional fuzzy theory model and extracted the input data classified as
rain + hail. Next, we assumed that these input data were generated from a single category of torrential rain and created a
single unsupervised Gaussian mixture model. Finally, we sampled training data for the classification of torrential rain
without hail using the MCMC method from this unsupervised Gaussian mixture model (Fig. 5). The reason for not using the
extracted input data classified as torrential rain + hail directly as training data and instead going through an unsupervised
Gaussian mixture model is to allow for an arbitrary number of training data. We conducted the training of the Gaussian
mixture model using Bayesian inference, using data for total 11 categories.

l l | l |

do  temperature Relative humiditv

:aln

Count

Figure 4: Example of training data sampled from the fuzzy logic model using the MCMC method (rain and hail category)

torrential
rain
—_
c
=
{=
o

RHV temperature Relative humidity

Figure 5: Example of training data sampled from the unsupervised Gaussian mixture model using the MCMC method
(torrential rain category)

ERAD 2024 96



ERAD 2024 — 12" EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY

4 Results

As an example of the classification results by the proposed mixed Gaussian model for the case of a significant hail disaster
in the Kanto region of Japan from 14:00 to 18:00 on June 3, 2022, Figure 6 shows a cross-sectional diagram of the
hydrometeor classification results at 35.9 degrees north latitude at 15:35 on June 3, 2022. Figure (a) shows the hydrometeor
classification results by the Gaussian mixture model before adding the torrential rain category, and Figure (b) shows the
hydrometeor classification results by the Gaussian mixture model after adding the torrential rain category.

Figure 6(a) shows the presence of a hail and rain category (indicating the presence of hail) at a latitude of 139.2 degrees and
an altitude of 2000-3000 meters, whereas in Figure 6(b), the same area has completely changed to a torrential rain category
(indicating no hail). In Figure 6(a), the hail category is present over a wide area, leading to the expectation of social media
posts about hail occurrences; however, upon reviewing social media posts for the day and the following day, it was found
that there were no posts related to hail in this area during the time frame in question. While it is natural for there to be no
social media posts about hail in uninhabited mountainous regions or during the late hours of the night, even if hail actually
fell, the area in question is heavily populated and the observations were made during the daytime. Therefore, the absence of
social media posts about hail despite the widespread presence of the hail category is unexpected, and it is more reasonable to
conclude that no hail occurred.

Figure 7 shows the distribution of Kdp at that time. From the figure, it can be confirmed that the Kdp in the area where the
previously mentioned hail and rain category existed is about 5 to 10, indicated by the red color. It is known that Kdp
theoretically shows near zero for solids, and if it is about 5 to 10 as in this case, it is strongly presumed to be liquid.
Therefore, it can be judged that this part was more likely a torrential rain that contained less solid matter than hail. In this
mixed Gaussian model, it can be considered that a model has been constructed that classifies into the torrential rain category
unless there is a situation where solids that cause significant hail damage occupy a large proportion in the phenomena of hail
and torrential rain, which are meteorologically difficult to separate. As a result, it can be considered that a model that can
theoretically reduce the false alarm rate has been obtained.

e hail and rain = torrential rain
o hail(small, large) = hail and rain
2 g graupel(dry, wet) £ hail(small, large)
= ice crystal = graupel(dry, wet)
i’ o
5 5000 Tneiiding FLot dry snow E 5000 NG hailt :jce crystal
S w00 wet snow S 2000 ry snow
< 3000 rain < 00 wet snow
. rain
2o drizzle = ;
1000 ?_ i - ade ) drizzle
2 | 1] - DL
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Figure 6: cross-sectional diagram of the hydrometeor classification results at 35.9 degrees north latitude at 15:35 on June
3,2022

The Kdp is significantly large, ranging from
z 5to 10, showing characteristics of a liquid
¢ rather than a solid.
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Figure 7: cross-sectional diagram of the Kdp at 35.9 degrees north latitude at 15:35 on June 3, 2022

5 Conclusions

It can be considered that the additional learning of the torrential rain category in the mixed Gaussian model using Bayesian
inference has captured the characteristics of Kdp well, and as a result, it has become a model that may reduce the rate of
false alarms. A detailed numerical evaluation of the hail forecasting technology using this model will be reported separately
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1 Introduction

Weather observation systems, including ground rain gauges, radar, and satellites, are essential tools for preventing and
mitigating weather-related disasters. Among these, weather radar is particularly valuable for its ability to continuously and
quantitatively observe rainfall over large areas with high spatiotemporal resolution. By emitting microwaves and analyzing
the reflected signals from raindrops, radar can estimate rainfall intensity, making it a critical resource for applications such as
forecasting.

However, the accurate quantitative estimation of precipitation using radar remains a challenge. The widely used Z—R
relationship, which estimates rainfall intensity (R) from radar reflectivity (Z), can produce varying results due to differences
in raindrop size distribution, measurement heights, and reflectance errors. Research has aimed to refine the Z-R relationship
by adjusting it for specific regions, weather conditions, and equipment to improve estimation accuracy. Additionally, issues
such as radar beam blockage by topography have prompted studies to develop correction methods that enhance radar accuracy,
particularly in complex terrain.

Global advancements in radar technology and data processing have led to significant improvements in precipitation
estimation. For instance, Japan's deployment of X-band multiparameter radar and subsequent calibration techniques have
markedly increased rainfall measurement accuracy.

The Thai Meteorological Department (TMD) has installed 189 telemetric weather stations throughout Thailand to monitor
rainfall. The average area covered by each station is approximately 2,734 km?; however, the resulting data are both spatially
and temporally insufficient. Most current studies on weather radar data in Thailand has focused on estimating rainfall intensity
based on parameters that can be obtained from radar observations, such as radar reflection factors and interpolation phase
differences, as well as composite processing. However, because the data distributed by the TMD are limited to hourly rainfall
intensity data after composite processing, it remains difficult to estimate precipitation by performing composite processing on
data with known quality issues.

Given these limitations, this study aims to enhance the accuracy and usefulness of weather radar data in Thailand by
proposing a new spatiotemporal interpolation method. This approach seeks to generate high-density rainfall data in both space
and time, addressing the shortcomings of current methods and contributing to more reliable hydrological data for disaster
prevention and mitigation.

2 Target Area / Usage Data

The target area for this study is the entire country of Thailand, using radar rainfall data distributed by the Thai Meteorological
Department (TMD). Thailand is equipped with 23 C-band radars. These radars provide data with a temporal resolution of 1
hour and a spatial resolution of 0.01°. The authors have been collecting weather radar data from the TMD since 2018, although
some data are missing due to gaps in collection. This study focuses on the period from April 2019 to March 2020, when data
availability was relatively better, though still imperfect with a temporal error rate of 39.8%.

Figure 1 illustrates an example of the spatial distribution of rainfall intensity observed by TMD radar, where beam-shaped
radar echoes indicate interference from radio waves at the same frequency. These echoes, attributed to insufficient non-
precipitation echo elimination, are categorized as error values in this study. Additionally, the radar data show significant spatial
gaps, likely due to the shutdown of specific radar sites. Ground rainfall data, used for comparison and validation, were also
provided by the TMD and are based on hourly measurements from ground rain gauge.
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Figure 1: Example of the spatial distribution of rainfall intensity observed by radar of the Thai Meteorological
Department (TMD)

3 Methods

3.1 Proposed method for constructing rainfall products

To estimate the spatial distribution of rainfall using weather radar, Foehn et al. (2018) proposed a method for spatial
correction of radar-estimated rainfall intensity using ground rain gauge data. While most previous research has focused on
spatial correction, few studies have addressed temporal gaps in radar data. Therefore, this research introduces a new method
for spatiotemporal interpolation of radar data, aiming to create a hybrid rainfall product, as illustrated in Figure 2.

[Create rainfall products]

Thiessen division of
ground rainfall data

Temporal
Missing

Spatial Interpolate missing areas
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No }| |
Hybrid Rainfall Product

Figure 2: Flow chart of the construction of the proposed rainfall product
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To address missing radar precipitation data, we first performed temporal interpolation using Thiessen-divided ground
precipitation data, followed by spatial interpolation. For large spatial gaps, ground rainfall data were divided into Thiessen
segments and subjected to areal interpolation. Figure 3 shows the seasonal spatial distribution of accumulated rainfall,
highlighting regions with error values forming a fan shape around the radar site. These error-prone regions, identified from the
accumulated rainfall distribution, were treated as missing observations. These missing values were corrected and interpolated
using inverse distance weighting, where the remaining data points were weighted by the inverse of their distances.

o) ; 3 o B

2019, Er;esdn 2020, rainy ébn 2022, rainy season

Figure 3: Spatial distribution of seasonal accumulated rainfall according to radar rainfall data in Chao Phraya River
basin

Three approaches to error value interpolation were considered, as shown in Figure 4. Error regions are outlined in purple,
with error value meshes in black. The red mesh indicates the area targeted for interpolation, while the yellow areas represent
the data used for interpolation. In Approach 1, interpolation was performed using observed values in four directions outside
the error region. Approach 2 used observed values in eight directions, including diagonals, thus incorporating more data points.
Approach 3 interpolated based on values in two directions, reflecting the circular nature of radar observations. The interpolation
process started at the edges of the error regions and proceeded inward.

L3N " NN
Approachl Approach2 Approach3

Figure 4: Overview of the three interpolation methods

The differences among the three interpolation methods were evaluated to identify the most accurate approach. This was
done by comparing the rainfall data before and after interpolation in areas observed by the radar without errors, determining
the most reliable complementation approach.

3.2 Application of the proposed hybrid rainfall product for runoff analysis

The applicability of the rainfall product generated using the proposed method was evaluated through a comparison between
observed discharge and rainfall-runoff analysis results. The analysis used the proposed hybrid rainfall product as input into
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the Rainfall-Runoff-Inundation (RRI) model (Sayama et al., 2011). The study focused on the Mun and Chi River basins in
northeastern Thailand (Figure 1). Ground elevation data were sourced from the MERIT Hydro hydrography dataset,
evapotranspiration data were obtained from the Japanese 55-year Reanalysis product (Kobayashi ef al., 2015), and land use
data were provided by the Land Development Department of Thailand.

4 Results

4.1 Comparison of interpolation results for different approaches

Figure 5 presents scatter plots of observed data for each grid point, alongside the spatial distribution of rainfall before and
after interpolation using the three approaches examined in this study. Virtual error value regions (indicated by pink lines) were
arbitrarily set in the original data, and comparisons were made by applying each interpolation approach. All approaches tended
to underestimate precipitation over time after interpolation, likely due to difficulties in reproducing localized heavy rainfall
within the error regions. Among the methods, interpolation approach 2 produced a rainfall distribution that most closely
matched the pre-interpolation data, showing greater continuity compared to the other approaches.
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Figure 5: (Upper) Observation data before and after interpolation for each grid point and (lower) spatial distribution of
rainfall before and after interpolation using each approach

Approach 3, which interpolates from two directions based on a circular pattern around the radar site, led to abrupt changes
in rainfall values at the center of the fan-shaped regions. This resulted in less accurate precipitation estimates. The comparison
of'the three interpolation approaches revealed that approach 2 demonstrated the highest accuracy, based on both the coefficient
of determination and root mean square error (RMSE) values. This makes it the most effective method among the approaches
tested. While a larger data set could improve reproducibility, approach 2 was selected for its balance between accuracy and
the effective use of available data, making it the basis for the subsequent runoff analyses.

4.2 Runoff analysis results

Figure 6(a) presents the accumulated precipitation time series for ground gauge precipitation (red lines) and the hybrid
rainfall product (green lines). While the two products are similar, differences in total annual precipitation were noted: 1,097
mm for the ground gauge and 987 mm for the hybrid product. This discrepancy is attributed to the insufficient number of
ground rain gauges and the lack of topographical considerations. Both products show more rainfall on the eastern side of the
basin, but the hybrid product differs from the ground gauge data, which is limited by the sparse distribution of rain gauges.
This suggests that inadequate gauge coverage hinders accurate precipitation estimates across the entire basin.

ERAD 2024 101



ERAD 2024 — 12" EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY

Ero0((@) =
2 500
@ —— GroundRaingauge
2 — Hybrid
= i
E._%Z ______ - 0
IT
10
2000
(b) —— Ground 20
Hybrid '\‘é
%1500 o Observed 302
s 0E
s £
5 1000 &
= 3
=
500

ﬁ:r, May Jun Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar.

Figure 6: Time series of accumulated precipitation and discharge for each rainfall product

Runoff calculation results using each rainfall product are shown in Figure 6(b), focusing on discharge at station E.97 (Figure
1). The runoff analysis using ground rainfall (red line) and hybrid rainfall (green line) produced different results, with the
hybrid product yielding higher accuracy. The Nash-Sutcliffe (N-S) coefficient and peak flow error were 0.90 and -61.0 m*/s
for the hybrid rainfall, and 0.70 and 504 m?/s for the ground rainfall, respectively. These results demonstrate that the hybrid
rainfall product, despite some spatiotemporal errors, is effective for runoff analysis.

In summary, the proposed hybrid rainfall product, developed through the interpolation and modification of radar data, proves
useful for runoff analysis and is effective for disaster prevention and water resource management, though further refinement
may be necessary to address remaining data quality issues.

5 Conclusions

This study developed a hybrid rainfall product by interpolating publicly available weather radar data from the Thai
Meteorological Department (TMD) and evaluated its suitability for runoff analysis. Temporal and large-scale spatial data gaps
were addressed using ground rainfall data, and radar data errors were corrected through spatial interpolation. Various
interpolation approaches were compared, with the hybrid product achieving a Nash—Sutcliffe coefficient of 0.90,
demonstrating accurate discharge reproduction.

The proposed hybrid rainfall product is expected to be valuable for flood and water resource management, especially in
areas with sparse ground rain gauges. It offers an additional option for rainfall datasets in Thailand, contributing to more
accurate rainfall estimation. Future research should focus on enhancing rainfall intensity estimation and refining composite
methods to further improve the accuracy of TMD radar-based rainfall estimates.
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1  Introduction: Origin of the project

Meétéo-France has been supporting for many years research works on the integration of new opportunistic sources of data
in its operational systems. In 2017, Météo-France started a project named Raincell with two partners, in order to use
commercial microwave links (CML) data to improve quantitative precipitation estimation (QPE) in complementarity with
standard sensors as rain gauges and weather radars. The scientific partner is IRD (Institut de Recherche pour le
Développement) which has a long experience on CML data use, particularly in Africa [1]. The CML data provider is the
telecommunication operator Orange. The main feature of this project is to operationally retrieve in real time CML data over
the whole country, to produce early after measurement a new fusion QPE product merging CML, radar and rain gauges data.

From December 2022 to June 2024, Orange collected and transmitted in real time to Météo-France high resolution CML
data (15 seconds, 0.1 dB of digitalisation, 2 channels by link), covering mainland France and some overseas territories. The
network of CML varied a little in time, but more than 4500 links was available each minute.

2 Methodology: Classic method for CML estimation of rainfall

The estimation is based on the attenuation by liquid precipitation of the signal between a pair of CML antennas which
constitute a link [2],[3],[4]. Different steps allow to estimate rainfall from the measurement of the raw attenuation (figure 1):

—  Definition of wet and dry periods. 7 Dry wet Dy WD

— Estimation of a baseline representing the maximal path 78 1
integrated attenuation (PIA) during the last dry period. 761

— Estimation of the total PIA. (in dB) only due to liquid
precipitation.

— Estimation of the mean specific attenuation k (in dB/km)
by dividing by the length L of the link.

— Then the rain intensity R (in mm/h) can be directly
estimated by a k-R relationship:

PIA, = (raw attenuation — baseline)=L k=LaR" (1) | |
with (a,b) depending on the signal frequency [5]. ‘ ' i W Wil A
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An interest of the k-R relationship is that the b value is close 60 LMW aftenuation —* | ’
to 1.0 for a large range of frequencies used by CML. Between 18 12:00 18:00 0:00 6:00 12:00 1800 time

to 23 GHz the k-R relationship is quite linear. Figure 1: Principle of the CML estimation of rainfall.
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3  Incertitude, limits and sources of errors

The sensibility to liquid precipitation increases with frequency, and decreases with length as the attenuation is integrated
on all the path. As a result, in general the CML lengths diminish with frequency. Figure 2 shows that each link provided by
Orange in 18 months has is own minimal and maximal rainfall detection limits, depending on its couple of frequency and
length characteristics. Consequently, some links cannot be used to estimate rainfall on account of their low sensibility, and
heavy rainfall can completely attenuate the signal of other links (in this case CML data is missing but not wrong).

But liquid precipitation is not the only source contributing to raw attenuation between two antennas, and the data
processing is not perfect. We can notice several sources of error in the CML estimation of rainfall [6],[7],[8],[9]:

—  Wrong identification of wet/dry periods, and wrong estimation of the baseline.

—  Wet antenna attenuation (WAA) during and after the end of a rain event, or due to dew, drizzle or fog.

—  Diurnal variation of the dry attenuation, related for example to the sensibility of each antenna to temperature.

— Atmospheric conditions causing abnormal propagation of the signal between antennas.

—  Environment of the link, as tree(s) between two antennas, causing high frequency variations of attenuation when the
wind is blowing, or slow drift in spring when the leaves are growing.

— Abrupt or gradual variation of the alignment of the two antennas, which has to be filtered.

— Fog, drizzle, ocean spray which seems to cause great over-estimations for links between islands and continent.

— In winter, ice over the antennas may be the cause of a strong attenuation, reducing the limit of detection (figure 3).

— In winter, and in mountain, we observed great CML over-estimation of precipitations when wet snow occurred
(figure 4). The utilisation of HYDRE, a fusion product of Météo-France, to invalidate CML data during short
periods of time has been validated, and showed good improvement of the precipitation estimation performance in
winter: better correlation (figure 5), suppression of extreme over-estimations.
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Figure 2: For each 5245 links: in blue curve, minimal detection (i.e. sensibility); in red maximal detection for a 40 dB
maximal attenuation usable. In green, frequencies of the links. Ranked in descending order of the minimal detection limit.
Insert: distribution of frequencies and lengths.
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Figure 3: Before/after cleaning ice. Figure 4: On the lefi, great over-estimation of CML vs reference estimations. On
Source/Copyright: Orange. the right, HYDRE indicates wet snow in the air and staying at ground at the same time.

4 Validation results of classic CML estimations of rainfall

For all the validations, the reference was a 2D fused QPE product merging radar and rain gauges data (named Antilope),
integrated on the path of each link, which is the best QPE available at Météo-France at S-minutes and 1-hour time steps. All
the data processing was made exactly as in real time, without knowing the future, and without possibility to modify the past
estimates after the delivery of these estimates every minute. Every external data has to be available in real time.

4.1 Validations of the software

These validations over 5 months and for 180 chosen links (18-23 GHz), showed that the main improvements of the code
between the different versions was (figure 6):
— the proposition of a new criterion, based uniquely on CML data, to define wet/dry periods (version V1.0),
— the utilisation of a radar QPE product, dated 5 minutes before real time, to define wet/dry periods (version V2.0). In
this case, the reference using also radar data, some validation criteria become insignificant, like the probability of
detection which is always close to 100% for the V2 CML estimates.
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4.2 Large validation of CML estimates

A validation of the V2 software estimates, without using HYDRE, has been realised over 1 year of data (Dec. 2022 to
Nov. 2023) and for the summer and winter periods, for quite 4000 links available a long period of the time. A minority of
links produce very bad rainfall estimates, with very important errors of estimation (figure 7, table 1): these links cannot be
used and have to be invalidated. Other links can provide very interesting rainfall estimates, and in this case it is not always
easy to determine which of the CML estimates of rainfall or the reference is better. Nevertheless, the data processing is not
perfect, and for many links produces a number of false rainfall estimates, mainly small values, which have to be eliminated

(red ellipse in figure 8).
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Figure 7: Validation of CML hourly estimates with reference, for about 4000 links,  Figure 8: hourly CML and
1 year. Each curve presents all vesult values by link, ranked independently for each  reference estimates, for about
curve by decreasing order. 4000 links, 1 year.

B 25% closest to reference | 50% closest to reference | 75% closest to reference | 25% the most distant to reference

+0o 2 bias [ bias r bias T bias
No filter 0,89 +8 % 0,87 +11 % 0,85 +17 % 0,75 +98 %
+0,04 +12% +0,05 +18% +0,07 +27% +0,10 + 166 %
ref > 0.4 mm 0,80 2% 0.77 0% 0,74 +4 % 0,61 +67 %
+0,07 +11% + 0,09 +16% +0,11 +24 % +0,14 +73%
ref > 1 mm 0,75 -7 0% 0,71 -6 % 0,68 -3 % 0,55 +50 %
+0,09 +11% 12 +16% +0,13 +23% +0,16 +61%
R 0,59 -19 % 0,54 -19 % 0.51 -20% 0.47 +16 %
= +0.21 +.15% +0,23 +21% +0.24 +28% +0,26 +47 %

Table 1: Mean value and standard deviation (c) of the correlation (r) and relative bias in % ([link-ref]/ref) between CML
rainfall estimates and reference values, 1 year. Estimated for different filtering of the reference values, and for several sets
of links function of distance between link estimates and reference, estimated with 3 criteria (v, bias, % of rainy time steps).

Figure 9 presents the impact of frequency and length of the links on results for all year: better results observed for lengths
between 6to 10 km; better results for 18to23 GHz, worst results for frequencies below10 GHz (what was expected).
No direct relation was found between the performance of the rainfall estimation and other metadata of the antennas or
associated devices. A seasonal analysis also indicates that on average the performance is better in a large summer season
(May to September) than in winter (December to February), but it is possible to improve the results in winter if we can
eliminate periods of time not suitable for rainfall estimation by using external information (like HYDRE for example).
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Figure 9: Validation of hourly CML estimates with reference, for 3983 links, 1 year, no use of HYDRE, no filtering. In blue,
mean values of the criterion by class of frequency or length. In red, standard deviation of these values for each class. We can
note that over-estimations are reduced in summer, and strongly increased in winter (not shown).
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5  Preliminary Results for a Machine Learning CML-based QPE

5.1 Motivation

Both version V1 and V2 of the classic software are characterised by a sensible false detection rate. However, recent
successes in machine learning (ML) for rain/no-rain (or wet/dry periods) segmentation using attenuation data suggest that
ML approaches may improve accuracy of rainfall estimates [10]. Additionally, the classic methodology has limited
performance to correct all the sources of errors in the QPE processing. Therefore, a deep learning approach was developed
both for wet/dry segmentation and QPE estimation with a 5-minutes resolution. The first results confirm the good
performance of ML for the segmentation, but also are encouraging concerning QPE performance.

5.2 Data

To build inputs, the two channelled attenuation data of a link were first centred by subtracting a sliding median and then
normalised through a fixed multiplicative factor. For each link, the data series was segmented into 3-days intervals with a
6-hour overlap, except at month transitions, to ensure that entire months could be set aside for performance evaluation. As a
result of the 15-seconds time step, the training inputs are arrays of size 2 x 17,280. To evaluate the outputs, the 3-days arrays
are reassembled into monthly time series to minimise redundancy and edge effects.

The quantitative targets are generated from the 5-minutes reference product as the corresponding wet/dry masks, allowing
to attempt both QPE through a time step-wise regression and wet/dry segmentation.

5.3 Methods

Details on loss functions, network architectures, data augmentation practices, may be found on the repository
[github.com/nanopiero/CML_processing by ML].

Network design and supervision framework: The proposed approach combines a generic wet/dry segmentation with
link-specific regression in a multi-task setting inspired from Moraux et al [11]. Attenuations are first passed to a fully
convolutional network resembling U-Net [12].

To operate at the native resolution (15 seconds) while maintaining a large receptive field (8 hours), atrous convolution
[13] is employed. Moreover, a limited amount of pooling layers and the use of left zero-padding ensure causality. The UNet-
like network produces two temporal series: the first represents the estimated probability of rain while the second,
representing QPE, feeds a small fully connected network whose weights are specific to the processed CML, allowing a
proper calibration. For unknown CML, a non-specific version of this small network provides a generic QPE.

Finally, to address the temporal resolution gap between the 15-seconds outputs and the 5-minutes targets, masked versions
of binary cross-entropy (for segmentation) and mean square error (for regression) were used.

Data Augmentation: To enhance generalisation performance, standard strategies are employed such as channel switching
and random cropping. Additionally, an additive data augmentation process was implemented which consists in randomly
summing attenuation signal to obtain a plausible new signal, notwithstanding the difference in terms of device characteristics
(e.g. frequency).

Experimental setup: To evaluate performance on extrapolating to new data, three months of data from each of the 3264
CML in the training set have been set aside (“Test Intra”dataset). Additionally, to assess performance on unknown CML, a
separate set of 654 CML has been reserved (“Test Inter”’dataset).

Results: The results for the wet/dry classification are consistent with the literature. Figure 10 presents the QPE results for
correlation and bias. QPE produced on the links used during training (“Test Intra”) have a quality comparable to the classic
software V2 which uses radar data. On the reserved “Test Inter” dataset, the bias appears more variable around the median
value. This is due to the fact that the non-specific ending network can hardly provide calibrated outputs.
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Figure 10: Validation of ML and classic software V2 5mn estimates with reference (“Test Intra”
and “Test Inter”), for different filtering. Ranked independently for each curve by decreasing order.
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6  Conclusion about a future operational utilisation

The last step of the data processing is to combine the CML estimates of rainfall with other sensor estimates in order to
improve our current 2D fused QPE product merging radars and rain gauges data. This work, still on going, is realised by
testing different methods, both for the classic CML estimates and the Machine Learning estimates. A specific challenge
could be to better take into account the path integrated characteristic of the CML estimates, because this point could be
improved. The final values of rainfall will be validated by cross validation with rain gauges measurements, in order to
determine if the new fused product improves or not the quantitative precipitation estimation at ground level.

In complex terrain, particularly in mountain, the accuracy of QPE from radars and rain gauges data could be locally
limited and the link measurements, realised close to the ground, could help to increase the density of valuable observations.
But, as mentioned, this is also in mountain that CML estimates may have reduced performance, particularly in winter. So the
improvement could be limited a part of the year, even if HYDRE could help to manage this limit.

In addition to data processing, for a future operational utilisation, other operational tasks need to be validated. In
particular, the CML network evolves in time, and each incoming link will require to be evaluated before being used. A long
and large validation in operational condition will probably be necessary to validate the introduction of CML estimates in a
new operational fused product. Figure 11 shows that for a number of links it is possible to observe a very good agreement
between CML estimates and the reference over one entire year.

45 : e
40 | ——Link Daily precipitation in mm
35 = — Reference
30
25
20
15
10
5
0
1200
1000 —— Link Cumulative precipitation in mm
800 —— Reference
600
400
200
0 e
)

D ol G gy oy D DD DD oD DD R PR D DDA
APl S% sy i el ¢ ,bsa »@m&o&»ﬂ@o m@;bb»@ra NI B2 9‘*’» B 50 3P aP S\ A A
B A ARSI A A S
s 'L (;L@,chgbg Q'f-’mofbom& s mqgl?‘ 5 "’Q"b ’*"LQ”?
g e e g e e e gl
Figure 11: Example of series of CML (orange) and reference (green) estimates of rainfall for one
link. Frequency: 38 GHz, length: 4 km, from December 2022 to November 2023.
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1 Introduction

Ground-based S-band Frequency Modulated Continuous Wave (FMCW) radars have been used to assess atmospheric
boundary layer precipitation microphysical processes for more than 40 years [1] because they are relatively unaffected by rain
attenuation [2]; [3]. Derivation of key rain data products, namely, Drop Size Distribution (DSD) and rain rate (R) from
vertically-pointed FMCW radar observations assume that raindrops are Rayleigh scatterers that fall at their terminal velocities,
determined by the drop diameter [4]. In absence of Vertical Air Motion (VAM), the droplets' falling terminal velocity is directly
related to the radar-measured Doppler frequency. However, in the presence of VAM, the radar-measured Doppler velocity is
the superposition of the raindrop’s terminal velocity and the corrupting VAM velocity. Even at a fixed measurement location,
VAM is a complex phenomenon because it is height- and time-dependent. Storms can contain updrafts, downdrafts, and air
turbulence at varying spatial scales (a few cm to a few km) and of varying intensity (0.1 - 80 m s™').

Different VAM estimation methods have been proposed in the literature [5], [6], [7], [8], [9]. Thus, in W-band (4 = 3.2
mm), [6] proposed a method to differentiate VAM and raindrops terminal velocity by exploiting Mie scattering. The VAM
was determined by comparing the observed spectrum to a predicted spectrum assuming no VAM. However, this is only feasible
for very short wavelengths. In UHF band, the so-called Sans Air Motion (SAM) model [7] uses the capabilitics of UHF radar
profilers to discriminate between Bragg and Rayleigh scattering. While the former type of scattering is prominently associated
with fluctuations of the refractive index due with turbulence, the latter is associated to raindrops. During light precipitation,
both scattering processes are present. However, during moderate-to-heavy precipitation, Rayleigh scattering dominates, and
the SAM model is introduced to estimate the ambient vertical air motion, the spectral broadening, and the raindrop size
distribution.

The present work is a continuation of results from the Ph.D. thesis at the CommSensLab by Dr. A. Salcedo (advisor Prof.
Rocadenbosch) on VAM estimation, formerly presented in [9], which departs from the historic works of [5]. In [5], the authors
proposed a fitting method in which the DSD was assumed to be with an exponential form characterized by two parameters
(Marshall-Palmer distribution [10]). This methodology optimized the best fit between the theoretical spectrum retrieved from
the DSD model (shifted by VAM) with respect to the experimental spectrum observations. However, it required exponentially
distributed drop sizes and it is not suited for convective rain scenarios.

In [9], departing from the proposal by [5], a forward (FWD) method to estimate the VAM from stand-alone radar
measurements was first presented. The foundations of this method are to parameterize the DSD as a Gamma distribution [11]
and to project this parametric DSD through the radar processing chain up to the retrieved radar-measured reflectivity. Yet, the
FWD method conceived in this preliminary form was not exempt from limitations: particularly, negative VAMs (i.e., updrafts)
were wrongly corrected and velocity aliasing (i.e., Doppler velocities exceeding the maximum unambiguous radar velocity)
were not appropriately taken into account (e.g., leading to complex number exceptions, refer to Sect. 3). The latter is to say
that the radar-measured velocity is not the true atmospheric air velocity, but an aliased version of it, instead.

In the present work, in order to investigate and solve these issues, we present a basic atmosphere-to-radar simulator based
on FWD modelling of the DSD, VAM and S-band FMCW radar parameters. This technique was conceived to study the impact
of VAM on the retrieved radar products and, as a result, we propose an enhanced VAM correction method.

This paper is structured as follows: Sect. 1 summarizes basic state of the art on VAM correction. Sect. 2 presents the UMASS
S-band FMCW radar in the context of VORTEX-SE 2017. Sect. 3 introduces the atmosphere-to-radar simulator based on
forward modelling. Sect. 4 presents a simulation example. Additionally, a first application to real measurement cases from
VORTEX is shown in companion poster. Lastly, Sect. 5 gives concluding remarks.
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2 Materials

The S-band FMCW radar was developed by the Microwave Remote Sensing Laboratory (MIRSL), University of
Masschusetts (UMASS) [1]. The UMASS radar is a truck-mounted vertical profiling 2.92-GHz FMCW radar using two 2.4-
m diameter, 34-dB gain, vertically pointed antennas along with a 250-W transmitter [12]. The radar was operated at a rate of
256 frequency sweeps per 1.34-s interval. The reflectivity-velocity spectrum was measured with 1024 height bins and 256
velocity bins featuring 5-km maximum unambiguous range and +- 7.3-m s™! unambiguous velocity (equivalently, [0-14.6 m s°
1. Twelve such spectra, spanning 16.1-s temporal resolution and 5-m spatial resolution, were then averaged and sixth and third
moments (i.e., reflectivity factor and rain rate, respectively) were calculated from the averaged spectra. Volume reflectivity
(1, (m™)) was estimated from the radar equation radar equation ([4], Eq. (4.16)) and nominal system parameters. Reflectivity
factor (Z, (mm®~ m)) was calculated from volume reflectivity 7.

During spring 2016 and spring 2017, the UMASS radar participated in two main measurement campaigns in northern
Alabama as part of the Verification of the Origin of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE) [13] [2]. In
2017, hardware upgrades increased the maximum unambiguous velocity from +- 4.9 (m s') (2016) to +-7.3 (m s™) (2017)
[14]. The settings above have defined the instrument settings used in the simulator presented in Sect. 3.

3 Methodology

3.1 Radar-observed reflectivity-velocity spectrum

Central to the FWD-method atmosphere-to-radar simulator developed is formulation of the radar-observed volume
reflectivity density of rainfall signals as a function of Doppler velocity, 7ypsq(Vpop) (hereafter, the “'reflectivity-velocity
spectrum"), which is subject to the superposition of two effects: (i) aliasing by the radar instrument, and (ii) VAM. Detailed
radar-retrieval equations are given in Appendix, [3].

We seek to express 1,ps 4 (Vpop) as a function of the **true" atmospheric volume reflectivity density, 7,(v) Subscript “"a"
is a reminder of "*atmosphere", v is the terminal velocity of raindrops, and vp,,, is the radar-measured Doppler velocity due to
VAM. These two velocities are related as follows:

Vpop =V + Vyaym (D

where vy 4, 1s the VAM velocity. Because the radar points toward zenith, receding (negative) values of v correspond to
upward vertical motion, while inbound (positive) values correspond to downward vertical motion.

The terminal velocity of raindrops follows from the empirical v(D) relation for 0.109 <D < 6 mm put into analytical from
by Atlas et al., [15] and rewritten next in reciprocal form, D(v), for convenience:

1 9.65 v
D) = _Eln (E - 10.36,,(h)) w20 @)

where §,,(h) =~ 1 is a second-order height-dependent air density correction. The log term mathematically expresses that D
is only defined for D = 0.109 mm, as mentioned above.
The volume reflectivity with respect to velocity is computed as

n(w) =n(D) 5 3)

5
by using the physical relation n(D) = N(D)o (D), where N(D) is the DSD and o(D) = 2—4 |K,,|?D® is the backscattering

cross section assuming spherical raindrops (|K,,|?> =~ 0.92) for water at the radar operating frequency, 2.94 GHz). z—z and

explicit dependency D(v) are computed from Eq. 2 above.
In the absence of VAM, v = vp,, and reflectivity aliases only occur for high rainfall rates causing reflectivity factor

integrand D®N (D) (recall that Z = | 000 N(D)D"6dD) to extend over the radar maximum unambiguous velocity, Vp,q,. Under
these circumstances, the radar-observed reflectivity-velocity spectrum is the periodized version of 1, (v),

Nossa ™ (Vbop) = Ma()lv=vpyp o
where
ﬁa(v) = na(v) + na(v - vmax) + na(v + vmax)' (5)

and where symbol ~ is the periodizing operator with period equal to the unambiguous maximum velocity, vy,,,. Retaining
one period above and one below v=0 is more than sufficient approximation in practice.
In the presence of VAM, Eq. 1 holds and nobs_a(vDop) is computed as

T]obs,a(vDop) = ﬁa(v)|v=vD0p—vVAM,a = ﬁa(vDop — Vyama =) (6)
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3.2 Forward Simulator

FWD modeling is the use of a model (in the present case, a parameterized Gamma-model DSD) in order to simulate an
observable or measurement (in the present case, the radar-observed reflectivity-velocity spectrum).

Towards this end, Eq. 6 FWD-formulates the radar-observed reflectivity-velocity spectrum as the aliased version (Eq. 5 of
atmospheric volume reflectivity n,(v), which is computed from Eq. 3 departing from the atmospheric DSD, N, (D). The latter
is parameterised by defining shape parameters (N, 1 and A) cast into state vector x,. The reader is referred to [9] for detailed
formulation of the FWD model.

The FWD simulator operates in two main domains following identical computational procedure: the **atmosphere" domain
and the “‘user" domain. In the “‘atmosphere" domain, the simulator synthesizes the dataset 7,554 (Vpop) in Tesponse to
simulated atmospheric DSD state vector x, and atmospheric VAM velocity vy4u 4. Alternatively, this dataset can be
“switched" to “'real data" in order to collect in variable 1oy 4 (Vpop) the real measured spectrum by the radar instrument. In
the ““user” domain the simulator synthesizes the user-estimated reflectivity-velocity spectrum, 7,ps,, (Vpop), in Tesponse to
unknown, user-guessed, DSD state vector x,, and VAM velocity vy ap .

The simulator estimates the unknown DSD state-vector x,, and unknown VAM velocity vy 45 ,, by either sweeping manually
these parameters in a pre-defined multi-dimensional search space or by automatically solving the problem by means of
constrained minimization so that 7,ps.(Vpop) = Nobs,a(Vpop) under a minimum least-squares error criterion. From the
estimated x,, and corresponding DSD, the estimated reflectivity factor, Zp, and estimated rain rate, Ry, are derived as the 6th
and 3rd moments of the DSD, respectively. For validation and reference, the solution found by the solver, Z, is compared (in
dBZ units) against different error indicators connected with standard Z-R model relations (e.g., WSR-88D) [4].

5
x10
3 T T T T
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Sovs .3 Vvanfu =25 [mos7!]
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: mmmnnt S, Uranra(l) =3.0 [m s
2 L |
15 B

ovary = 3.0 [m 7]

Nou = 7000.0 [m % mm 1]
Ryrpa = 25.0 [mm b1

pa = 2.0 [1]

Now = 7000.0 [m? m'lm’l]
Ryrpy = 25.0 [mem |
p =20 []

Sope [ ) /(s )]

—

05 g

0 . . .
2 4 6 8 10

Doppler veloeity, v, {-m s 1]

L]

Figure 1: Radar products and VAM estimation analysis. Radar-observed reflectivity-velocity spectrum profile for
different VAM velocities.
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4 Results

The FWD simulator described in Sect. 3 was applied to the retrieval of the DSD, Z and R radar products from a synthetically-
generated reflectivity-velocity spectrum in presence of VAM. DSD and VAM velocity parameters are summarized in Tab. 1.
Column "“atmosphere" domain lists the parameters used to generate the radar-observed atmosphere spectrum. Column *‘user"
domain lists the search intervals used to estimate Gamma DSD shape parameters [9], x,, = (Ngy, iy, Ay). In order to best
represent radar velocity aliasing, an unambiguous velocity interval vy, = [0,9.8)ms™1, as in VORTEX-SE 2016, was
considered.

DSD and VAM parameters | ATMOSPHERE domain User domain
No[m™3mm™1] 8 x 103 103 to 10*
Ryp [mm h™1] 20 0.5 to 150
ul] 2.9 —3t08
Vyay [M 57 2 1t03

Table 1: DSD and VAM estimation analysis: Simulation parameters.

Figs. 1-3 show the FWD-estimated results of the simulation. In Fig. 1 S(v) stands for the reflectivity factor density, so that

Z= fOOOS(v)dv. Equivalently, S(v) = i_: IK:;IZ n().

In Fig. 1, the FWD-synthesized atmospheric reflectivity-velocity spectrum profile (i.e., the ““true" one) is denoted S, , and
plotted in grey dotted trace. The FWD-estimated profiles as function of estimated VAM velocity vy 4y ,, are denoted S, ¢
and plotted in solid-colored traces. The same format applies to Fig. 3, which shows the retrieved DSDs.

Fig. 2 plots the normalized error norm, €4, between the estimated radar-observed profile S,ps r, Which is a function of
search parameters Xy, Uy ap 4, and the ““true" one, S, 4, which is generated synthetically. The minimum error norm is attained
at Vyamu = 2ms~ ', which is the solution estimated by the solver and which re-encounters the correct solution in perfect
coincidence with the simulated atmospheric VAM (vy 4y o = 2 ms™1). This is also evidenced in Fig. 1 and Fig. 3 by the solid
black trace overlapping the dotted one, which validates the FWD-solver algorithm.

Fig. 3 legend lists the FWD-estimated reflectivity factor, Zr = 48.5 dBZ, and estimated rain rate, R = 38.7 mm h™" at the
VAM solution along with the ““atmospheric" reflectivity factor observed by the radar, Z,,;,= 48.6 dBZ. For further
comparison, the Marshal-Palmer Z-R estimate computed as Zp = 200 R with R = Ry, yields Zyp » = 48.4 dBZ, which is
only 0.1 dB below Zp, all of which shows good agreement of the retrieved results.

First application of the FWD-simulator for automatic VAM velocity estimation in real measurement cases is shown in
companion ERAD-2024 poster.
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Figure 3: Radar products and VAM estimation analysis. Atmspheric (“true”) vs. FWD-estimated DSDs.

5 Conclusions

An atmosphere-to-radar simulator embedding both a FWD-retrieval method for VAM velocity estimation and a parametric
simulator has been presented.

The enhanced FWD method shown, departing from the proposal of [5] and [16], computes second-order radar products
DSD, Z and R in response to a Gamma-parameterized DSD and VAM velocity with unknown parameters which are estimated
by the FWD-solver. The simulator also embeds simulation of the aliased reflectivity-velocity spectrum to realistically
synthesize the *radar observable". The mathematical formulation of the aliasing problem involved periodizing the volume-
reflectivity density by the radar maximum unambiguous velocity.

The results shown pave the way for automatic VAM correction. However, application of the methodology presented to real-
case scenarios during intensive observation periods in VORTEX-SE remains, particularly considering the height-dependent
and time-dependent variability of VAM in convective scenarios, which makes difficult comparison with ground-based sensors
(e.g., disdrometers). Additionally, microphysical processes such as differential sedimentation (size sorting) and drop shedding
by melting hail, which can substantially modify DSDs in convective storms, are not accounted for in this parametric model.
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1 Introduction

During the cold season when the freezing level is relatively close to the surface, radar measurements are often affected by
the melting layer (ML), which is known for its enhanced reflectivity (Zy) values comparatively to the rain below. This results
in a prominent artificial ring of enhanced surface precipitation surrounding individual radars in the current precipitation
products of the German weather service. Strategies to retrieve realistic rainfall at the surface for such cases include the
estimation of a vertical profile of reflectivity (VPR; e.g. Seo et al., 2000). These techniques correct the profile of Zy from the
effect of the ML eliminating not only the positive bias introduced by the ML, but also the underestimation caused by
overshooting at longer distances to reconstruct the intrinsic profile of Zy near the surface. The latter is subsequently used to
calculate rain rates.

The new strategy proposed here is a polarimetric extension of VPR exploiting polarimetric observations of the ML, hence
PVPR, and it was briefly mentioned in Ryzhkov et al., 2022 (section 2.4). The main advantage relies on the detection of the
ML edges and application of a correction independently for each radial. The detailed description of the method is presented
in section 2. Results of the corrected Zy field as well as the resulting rainfall are shown in section 3 for a few events
occurring in Germany in January 2018.

2 Methodology

Systematic observations of the ML reveal a correlation between the maximum Zy and the minimum cross-correlation
coefficient puv values (Wolfensberger et al., 2016, Griffin et al., 2020). Taking advantage of this fact, the profile of Zy,
which is affected by the bias caused by the ML, is corrected based on the observed profile of puy. This is done through the
use of lookuptables that are generated by modeling profiles of both variables for a range of elevation angles. It is considered
here that two ML parameters are enough to characterize the ML: the height of the base of the ML (Hy) and the thickness of
the ML (AH). Lookuptables are generated for a variety of values of H, and AH.

For QPE applications low elevations are commonly used, and therefore the limits of the melting layer may not be very
accurate due to beam broadening at long distances from the radar. Therefore an important part of this methodology is finding
accurate values of H, and AH, which is performed using the ML detection algorithm by Ryzhkov and Krause, 2022
(MLDA). It uses modelled radial profiles at low elevation and stores them in lookup tables. The observed radial profiles of
puv and Zy are used to determine the range at which the beam is first affected by the ML (r,) and a new parameter that
quantifies the drop of the puv, the ML strength (S). Figure 2 illustrates the process to determine r, and S from one radial with
prv. Once these are calculated, they are matched with the ones in the lookuptables and the MLDA outputs true values of Hy,
and AH, corrected for the effect of beam broadening.

Height Phy z AZ = Zmax - Zrain
AH =H,—H,
min(p.w)( z
N
Zr phv

Figure 1: Idealized vertical profile of Z and puv showing the parameters used in the simulated profiles.

The correction of the Zy profile is an extension of the MLDA. The modelled radials that were previously used to find true
Hy, and AH (given a specific elevation) also contain the information on the Zy bias introduced by the ML (dzcor), which is
stored in separate lookuptables. So for each pair of H, and AH there is a correction for Zy along the whole beam that is
applied to the observed Zy profile. Profiles of dzcor are shown in figure 3 for a 1° elevation and the whole range of Hj and
AH. The corrected profile of Zy (Zn,or) is calculated as:
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Z Z,—dzcor (1)

H,cor —

It is clear from figure 3 that all dzcor curves show a positive bump within the ranges of the ML which decreases to
negative values beyond the ML top. This shape ensures that the bias due to the ML is corrected, but also that the decrease of
Zy when the beam enters the snow above the freezing level is compensated (see the definition of 3 in Figure 1). For a fixed
H, (Figure 3 left panel), the dzcor positive bump increases as AH increases, and extends further into the far ranges. When
AH is fixed location of the dzcor bump is displaced to farther ranges as the H, increases, and its magnitude decreases. So
radials wirh thicker MLs are subjected to more intense corrections in the Zy profile, and for the same thickness the correction
is more intense if the ML is low.
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Figure 2: Observed radial profile of puvshowing how r, and S are determined. r, and r, are the ranges at which the beam
encounters the lower and upper limits of the ML respectively.

2.1 Tests with parameters adjusted to the climate region of Germany

The profiles of dzcor are simulated with certain assumption on the parameters that characterize the profiles of Zy and pay.
The original lookup tables were generated with values based on statistics from several radars from the USA WSR-88D
network (Griffin et al., 2020, Ryzhkov and Krause, 2022 ). However, we are applying this method in a different climate
region and with different radar stations, for which the initial assumptions may differ. Therefore new parameters were
calculated from statistics based on one local radar (Julian Giles, Universtity of Bonn, personal communication). New lookup
tables were first generated using 2 differences from the original in Ryzhkov and Krause (2022): adding Hy = O for cases
where the melting layer is very close to the ground, and a lower Z . (from 36 to 30 dBZ) according to the local statistics.
This run was called the default run. Several other parameters were subsequently changed. In order to understand the impact
of each of the parameters, only one was changed for the different runs, so that it could be compared with the default run. The
parameters that were adapted according to the local climatological values were the value of the maximum Zy in the melting
layer, the rate of change of Zy with height above the freezing level (3) and the range of ML thicknesses (AH). A few other
were changed since there doesn’t seem to be a consensus about the actual values they should have, as for example the
coefficient of attenuation (a) within the ML. The default run applies a multiplicative factor of 2.0 to the value of o in the rain
to represent the enhanced attenuation inside the ML, and that multiplicative factor was altered in the test runs. The negative
slope of the dzcor curve after the peak was also changed from the default value to better represent the upper edge of the ML,
which is usually observed as a relatively abrupt drop in Zu. Looking at any of the curves in figure 3, this coefficient impacts
how fast dzcor decreases with range after it reaches the maximum value.

The parameters used in the different runs are presented in Table 1.

Table I. Zy, profile parameters used in the default and test runs

Default Runs

Max AH 0.55 km 0.65 km
B 4 dB/km 3.5 dB/km

5 dB/km
Zmax 30 dBZ 28 dBZ
Multiplicative factor to o within the ML 2.0 2.5

3

4
Decreasing slope after the ML peak 1.25 1.5

1.75

The influence of the varied parameters in the profile of the dzcor is shown in Figure 4, as well as the differences with
respect to the default run. The differences are in general low (mostly less than 1 dB, for the fixed values represented). The
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largest differences are observed for the runs where 8 and the decreasing slope are changed from the default. The impact of
varying [ is mostly observed at far ranges, beyond the melting layer. It also affects affects more intensely profiles that have a
low ML height or profiles with thinner MLs (not shown). The effect of varying the decreasing slope has the most impact
after the ML peak, and it is stronger in profiles with thicker MLs. The value of the multiplicative factor used for the ML
attenuation had an imperceptible impact.

dzcor varying deltaH, Hb = 1.6 km dzcor varying Hb, deltaH = 0.45 km
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Figure 3: dzcor at 1° elevation for varying AH (left panel), and varying H, (right panel).
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Figure 4: dzcor at 1° elevation for the different runs (left panel) and difference between the default and the other runs
(right panel). Hb and AH are fixed at 1.6 km and 0.45 km respectively.

3 Results of PVPR application

3.1 Impacton ZH

The application of PVPR to one PPI of Zy is shown in Figure 5, along with pyy. The ML determined with QVP is located
between 1000 and 1300 m heights. The drop in puv associated with the ML is observed at a distance of about 30 km from the
radar and a ring of enhanced Zy is observed in the original data at a slightly longer range distance (~50 km, depending on the
azimuthal direction). The corrected Zy shows no sign of the ML ring and enhances certain precipitation features like a line of
weak convection to the west of the radar. This line is observed both in previous and subsequent images moving west to east
and is a genuine feature that was imperceptible due to the effect of the ML. The effect of the adjustments made to the PVPR
in the other runs are too small to be visible on single PPIs. However, the cumulative effect on several hours of QPE can be
significant and will be shown in the next section.

3.2 Impact on accumulated rainfall

Using the original and different PVPR runs with the corrected Zy, the rain rate was derived with 3 different relations that
were adjusted to the local climatology: R(Zu), R(Zu, An), R(Zu, Kop) (Chen et al., 2021). The corresponding rainfall
accumulation over 8h is shown in Figure 6 for the relation R(Zu, Kpp). The validation is performed by comparing the radar
retrievals with rain gauges, also represented in Figure 6 by the small colored circles, and using the same metrics as in Chen
et al. (2021): normalized root mean square error (NRMSE), normalized mean bias (NMB) and the correlation coefficient
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(CC). The effect of the melting layer is obvious when the original Zy is used, with a circle of extreme rainfall values
surrounding the radar, resulting in a large overestimation of the rainfall at intermediate ranges. At far ranges, especially
towards the south, the rainfall is underestimated. When the PVPR correction is applied the overestimation ring vanishes,
which greatly improves the overall appearance of the rain retrieval. However, there is a generalized underestimation,
confirmed by the value of the NMB of about -30% for the default PVPR. The region to the south that is underestimated with
the original Zy is greatly improved with the application of the PVPR. The validation metrics show that the NRMSE
decreases from 182% with the original Zy to 138% when the default PVPR is used. The rainfall calculated with the modified
PVPR shown in Figure 6 (right panel) is very similar to the one using the default PVPR, with only slight differences
observed. The metrics are slightly improved with the NRMSE decreasing to 128%, NMB decreasing to -23%, and the CC
increasing from 0.18 to 0.25.

Raw Zy PVPR-corrected Zy

150

dsz

-150 ™
-150 -100 -50 ) 50 100 150 -150 -100 -50 150
W-E {km) W-E (km)
Zy - Corrected Zy
. 8
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Figure 5: PPI for the Hannover radar on 20180103 at 0150 UTC showing the original Z (top left), the PVPR corrected
with the default scheme Zy (top right), puv (bottom left) and the difference between original and corrected Zy (bottom right).
The elevation of the precipitation scan for this radar varies between ~0.8° in the north and ~1.4° in the south.

The effect of the different PVPR runs is summarized in Figure 7, where the NRMSE is shown for the different runs
(horizontal axis) and for a number of cases or radars (colored lines). As expected according to Figure 4, the main differences
with respect to the default run are observed for the runs where  and was changed. For most cases reducing the value of R
From 4 to 3.5 dB/km contributed to a slight decrease in the value of the NRMSE while increasing it to 5 dB/km increased it.
However, for one event the opposite happened with 3 of the radars (20180103 fld, hnr and boo), where a higher value of §
resulted in a decrease in NRMSE. Detailed analysis of QVPs for this event show an average [§ close to 5 dB/km, in contrast
to others which show values closer to 3.5 dB/km. This suggests that a universal value for § may not be ideal to correct the
profile of Zy, and that the statistics may need to be adjusted depending on the vertical profile of Zy above the ML retrieved
from QVP. The impact of all the other runs seems to be very small in terms of NRMSE. However, the decreasing slope after
the melting layer does show in some cases an impact in either the NMB or the CC, or both (not shown).

4 Conclusions

The application of the PVPR technique for QPE shows great improvement in removing the effect of the ML and the low
Zy at far ranges associated with the beam overshooting the ML. When the default parameters of the PVPR are modified from
the default value, there is only a very limited impact on the resulting QPE. Of all the parameters that were changed (see table
1) the one that shows the greatest impact was the change in [3. However, for some cases the metrics showed an improvement
when in  was increased to 5 dB/km while for other cases the performance was better when in [3 was decreased to 3.5
dB/km. This suggests that 3 may need to be adjusted on a case by cases basis in order to obtain the most accurate estimate of
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rainfall. Most other parameters showed only small changes in the validation metrics, with only the decreasing slope of dzcor
after the melting layer showing some visible improvement in NMB and/or CC.

So far the parameters were tested independently from each other. It is possible that the combination of some of the
parameters further improves the final rainfall retrievals. Future work includes the use of some machine learning techniques
to test the combinations that produce the best results.

PVPR default PVPR, B =5dBZkm

SN Lk}
S5-M thimd

We-E [kmip

NRMSE = 181.7% NRMSE = 137.7% NRMSE = 127 .7%
MNMB = 15.6%4 NME =-20.2% NMB = -23.25%0
CC=-0.10 cC=018 CC =025

Figure 6: Accumulated rainfall calculated from the R(Zu,Kpp) relation for the Hannover (hnr) radar on 20180103
between 00 and OBUTC. Left uses the original Zy, center the default PVPR correction and right the PVPR correction for the
run with 3 modified to 5 dBZ/km. The small colored circles indicate the accumulation measured by the surrounding
raingauges. Below each panel the validation statistics (NRMSE, NMB, CC) with respect to the rain gauges are shown.
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Figure 7: NRME for varying parameters within the Zymodel applied to different events and radars.
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1  Introduction

For the past decades, Doppler weather radars have been gradually upgraded to dual-polarization radars, which can
measure dual-polarimetric (dual-pol) parameters, such as differential reflectivity (Zpr), specific differential phase (Kpp), and
co-polar correlation coefficient (pny). Dual-pol parameters has been widely used in quantitative precipitation estimation
(QPE; Ryzhkov and Zrni¢ 1996; Brandes et al. 2002) and hydrometeor classification algorithm (Park et al. 2009). With
additional information related to hydrometeors, assimilating dual-pol parameters is expected to improve the microphysical
states and rainfall forecasts. Studies assimilating dual-pol parameters via the variational method modified the formula for
rainwater content estimation (Wu et al. 2000; Li and Mecikalski 2010, 2012). The dual-pol observation operator converting
model variables to dual-pol parameters (Jung et al. 2008, 2010) enables model validation with dual-pol parameters and direct
assimilation of dual-pol parameters with ensemble Kalman filter. Putnam et al. (2019) first attempted to assimilate Zpgr
observations with the operator proposed by Jung et al. (2010) in the real case. The mesocyclone structure was well captured
in the analysis field with the assimilation of Zpg. Tsai and Chung (2020) revealed that assimilating dual-pol parameters
achieves further improvement in short-term forecasts.

The aforementioned studies update rainwater mixing ratio (g,) and total number concentration (Nz-) with the assimilated
Zpr observations. The mean diameter of raindrops is consequently updated implicitly since it is the ratio between ¢, and Nr,.
A hypothesis is raised that leveraging the relationship between Zpr and the mean diameter of raindrops in the DA procedure
may have the capability to further improve microphysical states. Therefore, this study attempts to develop a novel approach
to updating the mean diameter of raindrops explicitly with the assimilated Zpr observations, which is expected to result in
more precise microphysical states than updating ¢, and Ny, separately. In order to prove the feasibility of this novel approach,
the observations system simulation experiment (OSSE) is conducted. Moreover, three different high-impact weather systems
are selected to execute the novel approach in reality.

2 Methodology

2.1 Radar Data Assimilation System

The radar DA system employed in this study couples the Weather Research and Forecast (WRF) model and local
ensemble transform Kalman filter (LETKF), named WRF-LETKF radar assimilation system (WLRAS; Tsai et al. 2014). The
observation operator introduced by Jung et al. (2008) is integrated in WLRAS. Based on the bulk microphysics
parameterization (MP) schemes and T-matrix simulation, model variables can be converted to simulated dual-pol
parameters. The horizontal reflectivity factor (Z;) and vertical reflectivity factor (Z,) are calculated as

Ze = ez [ Ne D) ] + Bfy (D] + 2C1fox (DI ()DD, 4)
Zox = oty [ NeDYBfux D] + Alfy | + 2€ 1 fo (1 fo DD, )

where A is the wavelength, and K, is the dielectric factor of water. Inside the integration are the hydrometeor size
distribution (N, (D)), major and minor scattering amplitudes (f,x and f) simulated by T-matrix, and coefficients related to
the canting angle of hydrometeors (4, B, and C). Subscript x can be r, s, and g which represent rain, snow, and graupel,
respectively. After transforming the all the hydrometeor variables to Z;. and Z,, and taking the decibel scale of the linear
combination, simulated Z;; and Zy are obtained. Subsequently, the simulated Z; can be calculated by the following equation,

Zpr = Zy — Zy. (6)

Since the axis ratio of ice-phased hydrometeors is a fixed value, the difference between Zy and Zy is limited, leading to the
simulated Zpr close to 0 above the melting layer.

2.2 Mean Diameter Update Approach

The same value of Zy can correspond to various values of Zpg, indicating that Zpr is independent of Zy to a certain degree.
Assimilating Zpr in addition to Zy can provide external correction in microphysical states. Consequently, previous studies
assimilated Zpr observations to update the common prognostic variables in double-moment MP schemes, ¢, and Nz.. The
mass weighted mean diameter (D,,) can be diagnosed via the following equations,

_ pwNTrT (1t+4) L
A= [ 6paqrl’ (u+1) ]3’ (7)
4+
Dy =222, (®)

ERAD 2024 119



ERAD 2024 — 12" EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY

where A and u are the slope and shape parameters of the three-parameter gamma distribution; p, and p, are the density of
water and air, respectively. Updating ¢, and N7, with the radar observations implicitly updates D,, based on Eq. (9) and (10).
The joint frequency of D,, and Zpr simulated by WRF double-moment 6-category (WDM6) MP scheme is shown in Figure
la. The one-to-one relationship aligns with the principle of dual-polarimetric parameters that larger raindrops lead to larger
Zpr values. Leveraging this one-to-one relationship may be able to enhance the correction in the D,, analysis. Therefore, this
study attempts to develop a mean diameter update (MDU) approach to update D, explicitly in WLRAS.

According to Eq. (7) and (8), D, can be recognized as mass evenly distributed to every raindrop. Therefore, the D,, value
could be extremely large if the N7 value is small. To prevent unrealistic D,, values, a threshold is essential when executing
the MDU approach. Since D,, is proportional to the reciprocal of A, the A minimum can be recognized as the D,, maximum.
Based on the A minimum in WDM6 scheme, the D,, maximum is 2.5 mm correspondingly. The D,, value in Figure la can
actually be higher than 2.5 mm; therefore, the D,, value smaller than 3.0 mm is set as the threshold to execute the MDU
approach. The complete procedure of the MDU approach is summarized in Figure 1b. Frist, D,, is diagnosed via Eq. (7) and
(8). If all the ensemble members at a certain grid point have D,, values smaller than 3.0 mm, the MDU approach is executed
to update D,, with assimilated Zpr observations explicitly; otherwise, Zpr observations are assimilated to update ¢, and Ny as
the previous studies did. After obtaining the g,, N7, and D,, analyses, ¢, new and N7 nen are subsequently diagnosed via the
following equations,

_ 3 pwal (W+4)NTy

Qr new = [(4.,.#)] 6pal(u+1) ’ Y
(4+4)13 Gﬂa‘ﬁ”r(u"'l)

N7y onew = [ ] Tpwl(u+4) "

Updating D,, explicitly with Zpr observations is expected to generate more correction in the D,, analysis through the
relationship between Zpr and D,,. Via Eq. (9) and (10), the external correction in the D,, analysis can feed back into the ¢,
and N7, analyses, resulting in additional correction in the microphysical states of rainwater.
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Figure 1: (a)The joint frequency of D,, and simulated Zpg,; (b) Flow chart of the mean diameter update approach.
3 Experimental Design

3.1 Case Overview

Three common high-impact weather systems are selected in this study, including a squall line, a typhoon, and a Mei-Yu
front. The joint frequency of Zy and Zpr observations reveal the microphysical characteristics of these three cases. The squall
line and Mei-Yu front cases have the similar distribution pattern of the joint frequency. The frequency concentrates in the
region of 30 dBZ < Zy < 40 dBZ in the typhoon case. In all three cases, the high frequency concentrates in the area with Zpz
smaller than 1.0 dB, indicating the intense precipitation systems are formed by relatively small raindrops in these heavy
rainfall events.
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Figure 2: The joint frequency of Zy and Zpr Observatlons below 4 km in the (a) squall line, (b)typhoon, and (c)Mei-Yu
front cases.

3.2 Assimilation Procedure

The WRF model version 3.9.1 is employed as the numerical weather prediction model for all the three cases. The initial
and boundary conditions are made from National Centers for Environmental Prediction (NCEP) 0.25° reanalysis field.
Figure 3 describes the whole DA procedure in all three cases. In the beginning, 50 ensemble members are generated by
perturbing the initial condition with the statistical background error covariance. Secondly, the ensemble members are
integrated for the model spin-up to obtain the mesoscale background field. After the model spin-up, radar data are
assimilated during a 2-hour assimilation period. V,, Zy, and Zpr are assimilated sequentially at each cycle. Three constraints
are employed for the assimilation of Zpr observations. First of all, negative Zpr observation data are eliminated since they
are against the fact that larger raindrops should be oblate and have positive Zpg values. Second, the Zpr observations are only
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assimilated if the altitude lower than 4 km in order to ignore the uncertainty of simulated Zpr above the melting layer. The
final constraint is that Zpr is assimilated in latter half of the assimilation period to guarantee that assimilating 7, and Zy
already construct reasonable precipitation system to assimilate Zpr observations. When the cycling DA is finished, a short-
term is initiated with the final analysis. Table 1 lists all the experiments conducted in these three cases. The VrZ experiment
assimilates only 7, and Zy observations. The VrZZdr experiment assimilates V., Zy, and Zpr observations. The
VrZZdr MDU experiment also assimilates V,, Zu, and Zpr observations but utilizes the MDU approach implemented to

explicitly update D,, with the Zpr observations.
LETKF Cycling Period
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Figure 3: The flow chart of the assimilation procedure including a model spin-up period, a 2-hour assimilation period,
and a 6-hour short term forecast after assimilation.

Experiment Names Assimilated Observations MDU Approach
N4 Vi, Z1 No
ViZZdr Vv, ZH, and Zpr No
VrZZdr MDU Vr, ZH, and Zpr Yes

Table 1: All the experiments conducted in this study.
4  Results

4.1 OSSE in the Mei-Yu Front Case

The Mei-Yu front case is used to conduct the OSSE to evaluate the feasibility of the MDU approach. Figure 4a shows the
max composite Zy in the background field of VrZ at 0700 UTC on 6th June 2022. The linear rainband is captured in after 5
assimilating cycles. The cross section of the correlation between simulated Zpr at the reference point (grey star) and
rainwater variables (gr, N7, and D,,) are shown in Figure 4b. The correlation between simulated Zpr and D,, near the
reference point exceeds 0.95, corresponding to the one-to-one relationship in Figure la. The high correlation reveals the
capability to propagate more correction from the observation space to the model grid. A pseudo Zpr observation is placed on
the reference point to conduct a simplified assimilation experiment. Assimilating the Zpz observation on the reference point
to update ¢, and N7 leads to the positive g. increment and negative N7 increment. Consequently, the D,, increment is
positive based on the adjustment in g, and N7. When the MDU approach is employed to assimilate the Zpr observation, there
is more positive D,, increment near the reference point, proving the hypothesis of updating D,, explicitly to generate more
correction in D,,. The additional D,, increment can feed back to g, and Nr. through Eq. (9) and (10), leading to more positive
g increment and negative N7 increment. This single-pseudo-observation assimilation observation proves the feasibility of
the MDU approach to generate more correction in the microphysical states of rainwater.

Figure 6 shows the root-mean-square error (RMSE) of Zpg, ¢», and N7 and the analysis error improvement in the latter
half of the assimilation period. The analysis error improvement is defined as

Analysis RMSE
. ) x 100%,
Analysis RMSE of VrZ

Improvement = (1 - (10)
where VrZ is the benchmark to evaluate the impact on the analysis ficld caused by assimilating Zpz observations.
Implementing the MDU approach to update D,, explicitly generates more Zpr analysis error improvement at each cycle.
Correspondingly, VrZZdr MDU shows more analysis error improvement in both ¢, and Nz analyses. These results proves
that the MDU approach is able to take advantage of the high correlation between Zpr and D,, to further improve the
microphysical states.

The performance of the short-term rainfall forecast is shown in Figure 7. The 6-hour rainfall forecast is divided to two
periods. In the 1% period, all three experiments present similar performance. As for the 2" period, assimilating Zpz
observations increases the success ratio while implementing the MDU approach shows the highest success ratio. Regarding
the overall performance of the 6-hour rainfall forecast, VrZZdr MDU has the highest fraction skill score (FSS) under every
threshold, especially for the threshold of rainfall higher than 40 mm. With additional improvement in the microphysical
states, assimilating Zpr observations through the MDU approach is able to enhance the accuracy of short-term forecast.
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Figure 4: (a) The composite Zy of the background at 0700 UTC 6" June 2022 obtained by assimilating V, and Zy for an
hour; (b) the vertical cross-section along the black line in Figure 4a of the correlation between simulated Zpr at the
reference point (grey star) and rainwater variables (q,, N, and D,,) at 0700 UTC 6" June 2022.
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Figure 5: Increment of rainwater variables resulting from assimilating a pseudo Zpr observation on the reference point
(grey star) with (the upper row) and without the MDU approach (the lower row).
(a) (b) (c)

2ZDR RMSE & Anslysis Eror Improvement QRAIN RMSE & Analysis Ermar (mprovernent QNRAIN RMSE & Analysis Error Improvement
15000

12 14300
e
& 13500

2 3000

TIHSE (48]

6

12508

12000

20
is
10

= ot Mo

B3

00
P ™ G0 onME ot gse e oade
ks s

Figure 6: The RMSE and analysis error improvement of Zpr, qr, and Nt during the latter half of the assimilation period
in the Mei-Yu front OSSE. The line chart displays the RMSE while the bar chart illustrates the analysis error improvement of
the experiments assimilating Zpg in comparison with the experiment only assimilating V, and Zy.
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Figure 7: The verification of the short-term rainfall forecast in the Mei-Yu OSSE. (a) Performance diagram of 3-hour
accumulated rainfall (the white cross indicates the scores of the 1*' period from 0800 UTC to 1100 UTC). (b) Fraction skill
scores of the 6-hour accumulated rainfall under different thresholds. The scores of all the experiments are the average
scores of the forecasts initiated at each cycle in the latter half of the assimilation period.

4.2 Impacts in Three Real Cases

Figure 8 shows the RMSEs of Zpg in the latter half of the 2-hour assimilation period in all three cases, as well as the
analysis error improvement of VrZZdr and VrZZdr MDU in comparison with VrZ. Consistent with the result in the OSSE,
implementing the MDU approach to assimilate Zpr observations reduces more Zpg analysis errors at each cycle in all three
cases. Therefore, it is proved that the MDU approach can leverage the relationship between Zpr and D,, to generate more
correction in various cases. The performance diagrams of 2-hour rainfall accumulation in the 6-hour rainfall forecast in all
three cases are shown in Figure 9a-c. Assimilating Zpr observations through the MDU approach outperforms the experiment
without using the MDU approach. As for the overall performance of the 6-hour rainfall accumulation, assimilating Zpg
observations to update g and N7 reduces the FSSs of higher rainfall. Implementing the MDU approach to assimilate Zpg
observations alleviates the degradation of rainfall forecast and can even performs better than VrZ (Figure 9d-f).
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Figure 9: Same as Figure 7 but for the performance diagrams of 2-hour rainfall accumulation and FSSs of 6-hour
rainfall accumulation in all three real cases.

5 Conclusions

In order to make use of the high correlation between Zpz and D,, in the ensemble-base DA, the MDU approach updating
D,, explicitly with Zpr observations is developed in this study. Through the high correlation between Zpr and D,,, the MDU
approach is expected to further improve the microphysical states. The OSSE is conducted to evaluate the feasibility of the
MDU approach. Implementing the MDU approach to assimilate Zpr observations generates more D,, correction than
updating ¢, and N7, respectively. Subsequently, the accuracy of ¢, and Nz analyses is improved. Initiated with more accurate
microphysical states, the performance of the short-term forecast is also improved.

As for real cases, the results of the analysis field are consistent with the OSSE. The MDU approach extract more
correction from the assimilated Zpr observations to further reduce Zpr analysis error. Assimilating Zpr observations in real
cases may degrade the performance of the rainfall forecast. Utilizing the MDU approach to assimilate Zpr in reality can
suppress the deterioration and even improve the performance of rainfall forecast in comparison with the experiment only
assimilating ¥, and Zy. Based on the results of the OSSE and real cases, converting the background variable to leverage the
physical relationship in the DA system is able to obtain more precise analyses and forecasts.
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1 Introduction

Numerical weather prediction is an essential tool for producing forecasts for a wide range of weather phenomena at
different spatial scales. However, the challenges posed by high-impact weather events, often associated with extremes, need
to be addressed by pushing the weather forecasting tools beyond their current limits and by strengthening the link with the
end-users of the forecasts.

The GLORI (Global-to-Regional ICON Digital Twin) project is the result of a trilateral collaboration between German,
Italian and Swiss institutions. The aim of this project is to develop a global-to-regional digital twin based on the prediction
capability of the ICON modeling system (Zéngl et al., 2015), improving, in particular, forecasts at different scales by
exploiting the knowledge and capabilities known about high resolution.

In this work, we focus on the Alpine region, and we aim to assimilate data from the Italian, German and Swiss radar
networks, for both reflectivity volumes and radial winds. Radar volumes over Germany are operationally assimilated at
DWD (Bick et al., 2016), while radar volumes over Italy are assimilated at Arpae (Gastaldo et al., 2018; Gastaldo et al.,
2021). At MeteoSwiss the assimilation of radar volume is in experimental phase (Claire Merker, personal communication).
The GLORI project provides the framework where radar data from the three partner countries will be used in combination,
permitting a better description of the precipitating systems over the Alpine area and therefore improving the forecasts of
intense precipitation.

The experiments presented here are related to the flooding events in Southern Germany in May 2022, but will be
replicated and investigated for the flooding episodes that hit the Emilia-Romagna Region, in Northern Italy, in May 2023. In
particular, the results will show the improvement of forecasts initialized with analysis including the assimilation of radar
data, with respect to the control run in which no radar data are assimilated. The impact of adding data from different
networks (German and Italian) will also be evaluated.

2 The GLORI Digital Twin

The GLORI DT is a configurable on-demand global-to-regional short-range high-resolution digital twin of the Earth’s
weather system. GLORI is developed in a trilateral collaboration between Germany, Italy, and Switzerland, including
operational centers as well as research institutes of these three countries, and with support by computing centers, to improve
availability of and access to cutting-edge weather and extremes forecasting data for decision-making. GLORI provides more
timely information needed for decision making and early warnings, such as short-range global and European storm-resolving
km-scale (~3 km horizontal) predictions, as well as regional very high-resolution predictions (~500 m horizontal) on selected
prototype-domains, the Alpine area and the Italian peninsula. The GLORI DT runs on different HPC systems, available for
the different project partners, thanks to a distributed infrastructure.

The chain described here is based on the BACY system. BACY stands for Basic Cycling and consists of a variety of shell
scripts designed to perform the analyses (atmosphere, soil moisture, snow, etc.) and model runs for full NWP data
assimilation and forecasting. It has been developed at DWD for running experiments in a fast and modular way and it is
portable to different architectures.

The DACE data assimilation package and the ICON model with its components, including the icontool package, are
included in the BACY implementation. The system is complemented by the MEC (Model Equivalent Calculator), which
generates the files where observations and forecasts are paired, prepared for the verification.

2.1  Implementation

For this work, the chain has started with an ICON global run with data assimilation at 13 km with a 6.5 km refinement
over Europe (2-way nesting), run on the Horeka machine at Karlsruhe Institute of Technology (KIT). The global data
assimilation is performed with a hybrid assimilation using 3d-Var and LETKF with a 40-members ensemble. Then, an
ICON-LAM data assimilation cycle, receiving boundary conditions from ICON-EU, is performed on the Alpine domain
shown in Figure 1, at a horizontal resolution of 2 km, with two refinements (two-way nesting) at 1 km and 500 m. The LAM
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data assimilation cycles are based on a LETKF scheme with a 40 member ensemble, assimilating conventional observations
and radar volumes. LHN is also applied, for the assimilation of surface instantaneous precipitation (Figure 1).
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Figure 1: GLORI Digital Twin model chain and used domains.

2.2 Test case

In the first phase of the work, as the assimilation of the Swiss radar volumes is still in the experimental phase, only the
German and Italian radar volumes will be used (the two networks are shown in Figure 2). In order to understand the impact
of the use of the different networks, several tests were performed, which are summarized in Table 1. One of the crucial points
is also the assimilation of radar-derived precipitation by the LHN, which is tested in combination or not with the assimilation
of volumes. In the test case LHN is applied using only German composite, in a second step we will also add composite from

the Italian side. The control run is the one in which no assimilation is performed.
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Figure 2: German and lItalian radar networks.

Table 1: Experiments performed on the Alpine domain. D stands for German radar volumes, I for Italian ones.

D I LHN
DI_radar_LHN T T T
DI_radar T T F
LHN F F T
none F F F
D_radar LHN T F T
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The first case study analyzed was a flood in Southern Germany for which an alert was issued (Figure 3). Assimilation runs
were performed from the 04/05/2022 00 UTC to 05/05/2022 00 UTC.
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Figure 3: Alert issued for the case study.

Next figures demonstrate how the forecast varies by changing the input data, i.e. using only the German radar composite
(left-hand columns) or the German and Italian composite together (right-hand columns). Observed precipitation from
German composite and German-+Italian composite is shown as a reference (Figure 4).

Radar Reflectivity (dBZ)

Figure 4: German (left) and German+lItalian (right) radar reflectivity composite for the 05/05/2022 19:00 UTC.

For the forecast run of 05/05/2022 initialized at 19:00 UTC, for the experiment with LHN, the difference between
simulated and observed reflectivity fields is shown in Figure 5, while in Figure 6 is the forecasted precipitation. In particular,

as can be observed in forecasted precipitation fields, the use of information on a larger domain increases precipitation over
southern Germany.
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Figure 5: Difference between simulated and observed reflectivity fields for the run initialized on 05/05/2022 19:00 UTC with
the analyses obtained using German radar + LHN (left) and German + Italian radar + LHN (right).

10

Figure 6: Total forecasted precipitation (in kg/m?) for the run initialized on 05/05/2022 19:00 UTC with the analyses
obtained using German radar + LHN (left) and German + Italian radar + LHN (right).

3 Future work

The aim of the GLORI Digital Twin project is to study in depth the impact of forecasts at very high-resolution, in
particular by paying attention to the needs of end-users.
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The research is in its early stages and is ongoing. Initial experiments have been carried out to verify the functionality of
the chain: from global to limited area assimilation runs. The first results already show the difference in using information
over a larger domain, combining all available data. Particularly when dealing with areas where the orography is complex.
When these results are confirmed, including data from the Swiss radar network, the horizontal resolution will be doubled by
switching the global ensemble from 13 to 6.5 km, with nesting from 6.5 to 3.25 km. We will then proceed with multi-nesting
to direct assimilation at 1 km with nesting at 500 m. This will mean that all configurations used operationally in the
assimilation cycles will have to be re-evaluated. In particular, for the assimilation of radar volumes, the resolution used for
superobbing and the horizontal and vertical localisation will have to be evaluated in order to define the errors to be
associated with the observations.
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1 Introduction

At the HydroMeteorological Service of the Regional Agency for the Environment and Energy of Emilia-Romagna (Arpae
Emilia-Romagna, Italy), the ICOsahedral Nonhydrostatic model (ICON; Zangl et al., 2015) provides deterministic and
probabilistic weather forecasts over Italy at a horizontal resolution of 2.2 km.

The modeling chain comprises hourly assimilation cycles that determine the analyses from which the forecasts are
initialized. In order to obtain the current operational configuration, the two components of the assimilation system were
tested: the kilometre-scale ensemble data assimilation (KENDA; Schraff et al., 2016) system, in which the Local Ensemble
Transform Kalman Filter (Hunt et al., 2007) scheme is implemented and which is employed for the assimilation of
conventional observations and radar volumes of reflectivity and radial wind, and the Latent Heat Nudging (LHN, Jones and
Macpherson, 1997) scheme, used to assimilate radar-estimated precipitation (Gastaldo et al., 2018; Gastaldo et al., 2021).

The focus of this work is on the use and on the impact of the LHN on forecasts. The LHN assimilates the precipitation
derived from radar data exploiting the high horizontal resolution and high temporal frequency of these data. It scales the
model temperature and humidity profiles according to the assumption that the precipitation rate at one point is proportional
to the latent heat integrated along the vertical column above it. The adjustment of the profiles is proportional to the ratio
between the modeled and observed precipitation and it differs according to the model precipitation type (stratiform or
convective). The LHN has a direct impact on the forecasted fields as it acts run-time during the assimilation cycle. It is
successfully used in different operational frameworks at DWD (Stephan et al., 2008), at MeteoSwiss (Leuenberger and
Rossa, 2004; Leuenberger and Rossa, 2007) and Arpae Emilia-Romagna (Gastaldo et al., 2018; Gastaldo et al., 2021,
Gastaldo et al., 2022). In the implementation of ICON over the Italian domain (ICON-2I), the surface rainfall intensity (SRI)
fields used as input to the LHN are provided by the Italian Civil Protection Department.

The impact of LHN on the forecasts is evaluated over a long period of time, characterized by different types of
phenomena, in order to have a significant sample. Runs with different pre-processing of the input data are performed and
then compared with a reference run in which no data assimilation is done. The verification of the forecasts is carried out
taking into account precipitation as well as upper air and near surface variables. In particular, the impact of considering the
quality of the assimilated radar data is shown.

2 Implementation

In the operational implementation of the ICON-2I model, the LHN is applied during the hourly assimilation cycles,
together with the assimilation through LETKF of conventional and radar data. In this work, focusing on the impact of the
LHN, deterministic 24-hour forecasts were made, with initial conditions from IFS high resolution analyses, applying the
LHN throughout the whole forecast. In the control run, no assimilation was made.

Forecasts were made for the period from 00 UTC on 01/04/2023 to 18 UTC on 21/05/2023. They were initialized every 6
hours for a total of 204 forecasts per experiment. This period was characterized by intense and persistent rainfall, which led
to two flooding episodes (2-3 May and 16-17 May) in Emilia-Romagna region, alternating with convective episodes typical
of the spring season. The total precipitation for the selected period, estimated from the hourly accumulated precipitation
product, is shown in Figure 1. This image highlights some of the problems affecting the radar network, i.e. beam blocking.

)

I~

Figure 1: Total precipitation accumulated from 01/04/2023 00 UTC to 22/05/2023 18 UTC. Emilia-Romagna region is
highlighted by the bold black outline.
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2.1 Dataset

The estimated SRI fields are used with a frequency of 10 minutes. These data are associated with a quality value ranging
from 0 (low quality) to 100 (high quality). The quality is calculated on the basis of several parameters: clutter, beam
blocking, distance from the radar, height of measurement and attenuation (Rinollo et al., 2013).

Analyzing the quality of the SRI composites as an average of the qualities associated with each individual acquisition
(Figure 2), we observe that there is poor quality in Northern Italy, along the Alps where the orography is very complex, and
where coverage is not optimal, ¢.g. in Southern Italy.

46°N ‘ y § o
‘ ; qﬁw 80

A

6°E 8°E 10°E  12°E 14°E 16°E 18°E 20°E
Figure 2: Mean quality of the SRI composites from 01/04/2023 00 UTC to 22/05/2023 18 UTC.
2.2 Experimental set-ups

As the assimilation of reliable and good quality data is expected to provide a more precise analysis, it was decided to test
latent heat nudging by selecting increasingly higher quality values in the SRI fields.

Figure 3 shows an example of how many data are assimilated by taking all data regardless of their quality (left), in a run
where only points with quality greater than 50 (center) and with quality greater than 70 (right) are selected.
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Figure 3: SRI product of 20/04/2023 12:30 UTC (left), with quality greater than 50 (center) and with quality greater than 70
(right).

Four different experiments were carried out:

o  w/o KENDA: 24-hour forecasts initialized from IFS analyses, without any assimilation

o w/o KENDA + LHN: as without KENDA, but using all available SRI data for all the forecast length

o  w/o KENDA + LHN ¢g>50: as without KENDA + LHN, but using only SRI data with quality higher than 50

o w/o KENDA + LHN ¢>70: as without KENDA + LHN , but using only SRI data with quality higher than 70
3 Results

Verification was performed for precipitation, temperature at 2 m, relative humidity at 2 m, pressure at the surface and u
and v wind components at 10 m and; for upper-levels, it was limited to temperature, relative humidity and wind speed.

For precipitation, the verification was carried out against rain gauge observations (almost 3000) of hourly precipitation
within the warning areas defined by the Civil Protection Department (Figure 4). Different thresholds were chosen for
average and maximum precipitation accumulations. Plots were obtained by combining the values of all time scales from +2
to +24 h. The results are presented in performance diagrams summarizing the calculated dichotomous scores (success ratio,
SR, on the x-axis; probability of detection, POD, on the y-axis; critical success index, CSI, on hyperbolic curves and
frequency bias on lines centered in the lower left-hand corner), in which the horizontal and vertical bars associated with each
symbol represent 95% confidence levels estimated by bootstrapping. The first hour was discarded as the forecasts initialized
by IFS give a strongly underestimated precipitation forecast and the reason is being investigated (Figure 5).
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Figure 4: Italian warning areas. Black dots are rain gauges. Figure 5.:Performance diagram for average precipitation for
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Figure 6: Performance diagrams for average (left) and maximum (vight) precipitation from +2h to +24h forecasts. The
different thresholds in use are represented by symbols, while the different experiments have different colors (blue: w/o
KENDA, yellow: w/o KENDA + LHN, red: w/o KENDA + LHN g>50, green: w/o KENDA + LHN ¢>70).

It is evident from the performance diagrams (Figure 6) that the use of the LHN significantly improves the forecast accuracy
compared to the control run (w/o KENDA, in blue), although it leads to overestimation of the frequency of occurrence of
precipitating events. The results for the different thresholds show very little difference between the w/o KENDA + LHN (in
yellow) and w/o KENDA + LHN ¢>50 (in red) runs. The use of a higher quality (w/o KENDA + LHN ¢>70, in green), on the
other hand, leads to an overestimation of the frequency of occurrence of precipitation and lower CSIL

Verification for the surface and upper air variables is calculated as described in Gastaldo et al. (2021) using aircraft
measurements (AIREP) for temperature and horizontal wind, radiosonde data (TEMP) for relative humidity and surface
station observations (SYNOP) for 2 m temperature, 2 m relative humidity, 2 m dew point temperature, 10 m horizontal wind
and surface pressure.

For surface parameters, the root mean square error (RMSE) as a function of the forecast lead time shows better values for
the wo KENDA + LHN ¢>70 run (green line) although the improvement is small (Figure 7, top row). For 2m relative
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humidity w/o KENDA + LHN (yellow line) is slightly worse than the control run (blue line) and for 2m dew point both w/o
KENDA + LHN and w/o KENDA + LHN g>50 (red line) runs are slightly worse than the control run. In terms of bias (Figure
7, bottom row), the only relevant differences are again only for 2m relative humidity and 2m dew point where the w/o
KENDA + LHN run performs slightly worse than the other runs.
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Figure 7: RMSE (top row) and bias (bottom row) of 2 m temperature, 2 m relative humidity, 2 m dew point, surface pressure,
and 10 m wind speed. Different experiments have same colors of Figure 6 (blue: w/o KENDA, yellow: w/o KENDA + LHN,
red: w/o KENDA + LHN q>50, green: w/o KENDA + LHN q>70).

Figure 8 shows the difference between the RMSE of the control run and each experiment (w/o KENDA + LHN in the left
column, w/o KENDA + LHN ¢>50 in the middle column and w/o KENDA + LHN ¢>70 in the right column) for each
atmospheric layer (y-axis) and for forecast time intervals (x-axis). Different rows are for the different parameters verified.
Green values indicate an improvement of the experiment with respect to the control. Missing boxes (white boxes) are for the
levels and the lead times for which there are not enough observations.
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Figure 8: Difference (in percentage) between the RMSE of the control run and the different LHN experiments (w/o KENDA
+ LHN in the left column, w/o KENDA + LHN q>50 in the middle column and w/o KENDA + LHN q>70 in the right
column) for AIREP temperature (top row), AIREP horizontal wind speed (middle row) and TEMP relative humidity (bottom
row) observations. For each coloured square, the values on the y-axis indicate the vertical levels defining the corresponding
layers while the values on the x-axis are the lead times defining the forecast intervals.

For temperature and wind speed from AIREP, an improvement in forecast accuracy is observed with increasing quality of
assimilated SRI data. Similarly, a consistent positive improvement is observed for relative humidity, which increases with
lead time. The improvement is stronger at lower levels (up to 775 hPa), but is also noticeable at the highest levels.

For temperature and wind speed from AIREP, the difference between the absolute value of the bias of the experiments and
the control run is very small with a slight worsening as the quality of the assimilated SRI data increases, especially in the
middle atmosphere levels. For temperature this happens after 4.5 hours of forecast, for wind speed 3 hours later. For relative
humidity the impact of the experiments is neutral. Due to the small values of the differences, these plots are not shown.

4 Conclusions

In this work, the impact of the assimilation of instantaneous precipitation data by the LHN on the ICON forecasts was
tested. In particular, the results were analyzed by increasing the quality value associated with these data.

For precipitation, the use of the LHN improves the results compared to the control run. The score values are similar
whether all the data are used or only those with a quality greater than 50. The use of higher quality thresholds, greater than
70, worsens the results. This is probably due to the reduction in the number of assimilated data. As far as the other variables
are taken into account, however, the verification shows an improvement for the upper air variables in proportion to the
increase in SRI quality, but associated with a slight worsening of the bias.

In the future, attempts will be made to further improve the impact of the LHN by modifying the various namelist
parameters during the assimilation cycles.
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1 Introduction

In recent years, hail-related damage has rapidly increased worldwide due to climate change, making the development of
hail forecast technology urgent. In the development of hail forecast technology based on conventional meteorological radar
data, there has been a lack of a sufficient number of fixed observation points capable of detecting hail, which is a short-term
and localized weather phenomenon. This limitation has made it difficult to evaluate and improve the accuracy of hail
forecasts. Therefore, we propose a method (T-SHIBA: Two-Stage, Hydrometeor classification and forecasting Induced By
SNS, Algorithm), which utilizes the rapidly expanding use of social media platforms (SNS) in recent years. Through SNS
posts by the general public about hail events, we identified approximate hail locations and times, enabling the evaluation and
improvement of hail forecast technology. This method consists of two stages: the first stage involves hydrometeor
classification in three dimensions based on observations from meteorological radar, and the second stage forecasts hail
locations in two dimensions (latitude and longitude) based on the results of the first stage.

This report presents the method for forecasts hail in the second stage. The hydrometeor classification method for the first
stage will be reported separately. In hail forecast, the hail locations are forecasted using hydrometeor classification results
for hail and the movement direction of rain cloud which is predicted using the advection vector of VIL (VIL: Vertically
Integrated Liquid water) estimated from the three-dimensional observations of meteorological radar. However, numerical
evaluation of forecast method for such weather phenomena was an issue because fixed observation data of localized weather
phenomenon such as hail is often fragmented information. In this situation, we evaluated the hail forecast method by
utilizing the locations and times of SNS posts about hail events. In this paper, we report the results of hail forecast for the
hail cases in the Kanto region from June to October 2023.

2 Methodology

In hail forecasting, meteorological radar is widely used to monitor the structure and development of thunderstorms. For
example, dual-polarization radar technology is employed to identify the presence of hail within thunderstorms. Radar-
derived products such as radar reflectivity and VIL are also used to detect and predict hail. Numerous hail prediction
techniques have been developed, utilizing meteorological data and models to assess the risk and scale of hailstorms. These
prediction techniques include those based on meteorological radar observation data and point observation data, that utilize
weather simulation models such as convection-allowing models (CAM) and the weather research and forecasting (WRF)
model in conjunction with observational data, and hybrid approaches that combine these methods to enhance prediction
accuracy. A representative method involves combining a one-dimensional coupled cloud model with a time-dependent hail
growth model[1]. This method generates vertical profiles of cloud velocity, liquid water content, and temperature, and
estimates the probability of hail occurrence and hail size. Additionally, hybrid methods include that utilize CAM outputs and
gridded radar observation data[2]. In this method, by matching hailstorms identified from CAM and radar observation data
with observed hailstorms, distribution parameters for hail size are predicted, and the probability of hail size and hailfall is
estimated. In addition to these studies, numerous studies employing machine learning have been conducted, and it has been
reported that the performance of hail forecasting improves. A mainstream evaluation method involves utilizing report
information from meteorological observation sites and meteorologists, often gathered through large-scale hail projects.
These reports are primarily based on observations made at specific locations, including information about the actual hail
occurrence locations and severity, recorded by observation stations or local observers. There is also hail size information
derived empirically from a hail index based on radar observation data and observed hail events. This information is used in
evaluations as data with excellent spatial and temporal coverage[3]. On the other hand, obtaining observational data that
could indicate potential hail damage on the ground is limited, and there are challenges in acquiring such data at short
intervals. Furthermore, when updating hail prediction methods based on newly obtained observation data, it is necessary to
not only manually review the observational data but also to adjust the parameters with expert input. As a result, adding
observational data and updating hail prediction methods impose a high workload, leading to certain limitations.

In this context, our study proposes a new hail prediction method using SNS post data, called T-SHIBA: Two-Stage,
Hydrometeor classification and forecasting Induced By SNS, Algorithm (Figure 1). The purpose of this method is to utilize
hail-related SNS post data from the general public to identify approximate hail occurrence locations and times, and to
evaluate and improve hail prediction technology online. In general, the quality of hail forecasts is expected to vary
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depending on the intended use of the forecast. For example, in cases where users take evasive actions based on hail forecasts,
frequent false alarms can reduce user response rates and lead to significant losses. In such cases, minimizing false alarms
becomes a high priority. As a method for improving the performance of hail prediction technology while allowing
performance adjustments according to the intended use of the forecast, this method adopts a two-stage structure consisting of
a common module and an individual module. In the first stage, three-dimensional observation data from X-band polarized
radar are used as input to output three-dimensional hydrometeor classification results. In the second stage, the two-
dimensional position (latitude and longitude) of hail is predicted based on these three-dimensional hydrometeor classification
results. By clearly separating the common module and the individual module for three-dimensional hydrometeor
classification, this approach aims to improve the accuracy of different hydrometeor classification models, such as those for
rain, snow, and hail, and enables the adjustment and updating of forecast models according to the intended use.
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three-dimensional observation data from i
an X-band polarimetric radar » Altitude

Common Module enome e 1% Stage B Y NS J
Commonly usable in classification hydrometeor Eﬁj
various forecasts such La classification 1P

hydrometeor classification

as hail, snow, etc. results in three dimensions results Extract from text and photos
+ posttime

Individual Module 7 Hail » post location

Replace with individual hailfall prediction 2nd Stage S / post content

T Ty I, _ Longitude St

¥

lJI csuiLuun ﬂIHUI s
according to the target Latitud ' / Lattisde
such as hail, snow, etc. R ———— Hail Disast
ail Disaster
Output : ST A - Area
Hail Disaster Alert — Evaluation——————~>

in two dimensions Hsill Disastar Longitude Longitude

Alert
. Algorithm Improvement

Figure 1: Our proposed new hail forecasting method (T-SHIBA)

2.1 Hydrometeor classification

The hydrometeor classification method used in the first stage of T-SHIBA improves upon traditional methods by using X-
band polarimetric radar to classify hydrometeor into 11 categories based on fuzzy logic, including torrential rain: 1) drizzle,
2) rain, 3) wet snow, 4) dry snow, 5) ice crystals, 6) dry graupel, 7) wet graupel, 8) small hail, 9) large hail, 10) rain and hail,
11) torrential rain. Our objective is to establish a method for reducing the false alarm rate in hail forecasting. The three-
dimensional hydrometeor classification model used in this method is trained using data from SNS post data specifically for
torrential rain cases where no hail was reported and applies a Gaussian Mixture Model with Bayesian inference to classify
categories including rain, hail, and torrential rain. This approach improves upon the issue where torrential rain without hail
was previously classified as "rain and hail" leading to a high false alarm rate even in the absence of actual hail. The specific
details of this method will be reported separately [4].

2.2 Hail forecasting based on hydrometeor classification results

In the second stage of hail prediction, two-dimensional hail prediction results are output based on the three-dimensional
hydrometeor classification results (Figure 2). Specifically, it can be broadly divided into two steps: hail detection and
expansion of the detection area. In hail detection step, three-dimensional hydrometeor classification results and three-
dimensional observation data from X-band polarimetric radar are used to detect hail at ground level. This detected data is
then converted and output as two-dimensional information. In the step of expanding the detection area, we predict hail
locations by extending the hail detection areas based on advection vector, which indicate the future movement direction and
speed of the rain cloud. The outputs of hail detection and forecasting are defined by a two-stage alert system consisting of
caution and warning levels to notify users. The caution alert is information that indicates that hail has been detected in the
sky and that there is a possibility of hailfall or torrential rain. The warning alert provides information with higher confidence,
using details such as hydrometeor size and signs that hail may fall to the ground, in addition to the caution alert. Therefore,
the two-dimensional hail prediction results consist of three categories: no alert, caution alert, and warning alert.

In this study, we present numerical evaluation results of a prediction method that focuses specifically on large hail, aiming
to reduce hail damage. The criteria for hail detection can be adjusted based on hydrometeor size derived from radar
observation data, as well as hydrometeor information obtained from three-dimensional hydrometeor classification. To
effectively reduce hail damage, it is beneficial to exclude smaller particles, such as graupel or those associated with localized
torrential rain, and to focus on predicting larger hydrometeors. By reducing false alarms in this manner, it is expected that a
decline in user response rates and an increase in losses will be prevented.
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Figure 2: Hailfall prediction process flow

2.3 Numerical evaluation method using SNS post data

In a numerical evaluation of hail predictions, when comprehensive ground truth data for hail is available, evaluation
metrics commonly used in machine learning, such as precision and recall, can be employed by comparing the actual hail
locations with the predicted hail locations. However, for rare weather phenomena such as hail, these indices cannot
accurately assess performance because they occur infrequently and in a localized area. To address the lack of accessible
ground truth data for hail, we developed a numerical evaluation method utilizing SNS post data. An issue when using SNS
posted data as hail observation data is that the time and location information of the posting is not necessarily accurate. This is
because SNS post data are not necessarily made in real-time and can be posted at the user's convenience. Additionally, users
may post after moving away from the observation location, leading to discrepancies in the timing and location of the actual
hail events. To deal with this, we implemented a strategy to introduce spatial and temporal margins during evaluation.
Specifically, we established a certain allowable range between the location and time of SNS posts and the predicted location
and time of hail, using this range as the basis for evaluation. For example, we defined a spatial margin where SNS posts
within 5 km of the predicted location are considered successful predictions, and a temporal margin where posts within one
hour after the predicted hail time are considered matches. Additionally, it is expected that regions with lower population
density will have fewer SNS post data, leading to variability in data availability depending on population density. To ensure
more accurate evaluation, it is desirable to include a large number of SNS post data, so we carefully selected the evaluation
areas. Specifically, we focused on areas with high population density, such as metropolitan regions, and conducted
evaluations based on case studies from these areas. To evaluate data with these characteristics, we defined three original
evaluation metrics. The evaluation metrics are prediction success rate(PSR), over-prediction rate(OPR), and lead time(LT).

The PSR is a metric that evaluates whether a specific hail event was successfully predicted without missing any SNS post
data, and it is defined by Equation (1).

PSR =§>< 100 (1)

Where, s represents the number of SNS posts judged as successful predictions, and n represents the total number of SNS
post data considered. A higher PSR indicates fewer missed predictions. Here, a prediction is considered successful if it was
output up to one hour before the SNS post data time and within a 5 km radius of the post location. This value reaches 100%
when all SNS post data are predicted accurately, indicating that the higher the value, the better the prediction performance.
We evaluate the missed detection performance by focusing on whether an alert is provided. Therefore, if a prediction is
deemed successful at the first warning, any subsequent caution is also considered successful.

The OPR is the ratio of the number of grids where hail was predicted for a specific hail case to the number of grids
predicted in areas inferred to be hail-free. This index used to evaluate whether an alert was predicted in an area close to the
time and location of the SNS post data and defined by Equation (2).

0PR = ZE% « 100 )
T me
Where, t represents the target prediction time, 7 is the number of target prediction times, m, is the number of grids predicted

to have hail at time #, and o, is the number of grids incorrectly predicted to have hail when there was none at time 7. A lower
value of this metric indicates that alerts were limited to areas surrounding the SNS post data. Grids without hail are
determined by allowing a certain margin in both time and location relative to each SNS post. Here, grids that are more than
two hours before the SNS post time and beyond a 20 km radius from the post location are considered as grids without hail.
The OPR takes a value of 0% when there are no false predictions for grids distant from the SNS post data, indicating better
performance when the value is low. It is important to note that this metric is based on SNS post data and does not necessarily
reflect all actual weather phenomena. The metric may be high when hail is predicted in areas without corresponding SNS
post data. However, this does not necessarily indicate an incorrect prediction, as actual hail may still be occurring in those
areas.
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LT is a metric used to evaluate how far in advance an alert was predicted relative to the time of a SNS post, or if the alert
was predicted after the fact, as defined by Equation (3).

LT} = timel,.q — time, 3)
Where, LT; represents the lead time for grid i corresponding to SNS post p(in minutes), timezi,red is the first time hail was
predicted in grid i, and time,, is the posting time of the targeted SNS post p. Grids used to calculate lead time are those that
fall within a 5 km radius of each SNS post location. Lead time is calculated from the first predicted alert time for both
caution and warning alerts.

3 Dataset

3.1 Data used for hydrometeor classification

To classify hydrometeor types, we used the data observed by conventional radars in Japan include the X- and C-band
parabolic dual-polarization radars that comprise the Ministry of Land, Infrastructure, Transport and Tourism’s eXtended
Radar Information Network (XRAIN) (Figure 3(a)). In this study, we used observational data from five X-band parabolic
dual-polarization radars deployed in the Kanto region of Japan (Kanto, Shinyokohama, Funabashi, Ujiie, Yattajima)
(Figure 3(b)). We performed a three-dimensional synthesis of each radar data (Zh, Zdr, Kdp and phv) using Cressman
interpolation and converted it into orthogonal coordinates with a resolution of 250m. Furthermore, for temperature and
relative humidity, we used values extracted from MesoScale Model(MSM) data that are numerical weather forecasting data
using the Japan Meteorological Agency (JMA) meso-scale model.
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Figure 3: Locations of XRAIN MP radars

3.2 Evaluation hail cases

The evaluation data focused on 11 cases of hail and torrential rain that occurred in the Kanto region between June and
November 2023 (Table 1). The Kanto region, which includes the densely populated capital city of Tokyo, provides a
relatively large amount of SNS post data. To evaluate the over-prediction rate of torrential rain cases in hail prediction, the
analysis includes nine cases of hail and two cases of torrential rain without hail. The evaluation period was determined by
the time span covering the initial and final timestamps of the SNS post data.

Table 1: Hail cases

No Case Time Number of SNS post data
1 |Hail 2023-06-28 13:00~19:00 23
2 |Hail 2023-07-03 19:00~23:59 30
3 |Hail 2023-07-04 14:00~18:00 10
4 |Hail 2023-07-10 14:00~20:00 16
5 |Hail 2023-07-11 17:00~19:00
6 |Hail 2023-07-12 16:00~18:00 1
7 |Hail 2023-07-31 16:00~22:00 54
8 |Hail 2023-08-01 09:00~17:00 21
9 [torrential rain 2023-08-09 10:00~16:00 0
10 |[torrential rain 2023-08-15 17:00~23:00 0
11 |Hail 2023-10-25 15:00~23:59 71

3.3 SNS post data

The SNS post data utilizes disaster-related analysis information from social media (X). This data provides more accurate
and real-time information by analyzing SNS posts related to disasters such as hail, based on the location of the posts and
images. The main information used includes the post date and time, analysis date and time, text, URL, and post location
(prefecture, city/ward/town, district, latitude, longitude).

ERAD 2024 137



ERAD 2024 — 12" EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY

4 Results

Figure 4 shows the visualization results for the top six hail cases and two sudden downpour cases with the most evaluation
SNS post data in the Kanto region from June to November 2023. In the visualization, the highest level of alert predicted for
each grid is displayed to observe the overall trends across all time periods for each case. In the hail cases shown in Figure
4(a)-(e), (h), it was confirmed that alerts were predicted for localized areas where SNS post data were concentrated. The alert
area shown in red is displayed within the area where SNS post data are distributed, indicating that this method captures the
area around the location where the hail occurred. Next, in the sudden downpour cases shown in Figure 4(f) and (g), This
result indicates that the proposed method effectively suppresses the issuance of alerts in torrential rain cases without hail,
thereby reducing the false alarm rate for hail. This suggests that the method has the potential to provide information that
reduces the likelihood of decreased user responsiveness and associated losses due to frequent false alarms.

Figure 5 shows the numerical evaluation results for the nine hail cases. In Figure 5(a), the prediction success rate achieved
over 80% accuracy, with 89.2% for caution alerts and 80.2% for warning alerts. Simultaneously, the over-prediction rate was
kept at around 50%, indicating that this method tends to detect hail without issuing excessive alerts. Figure 5(b) shows the
evaluation results for lead time. The average lead time was 16.9 minutes for caution alerts and 13.6 minutes for warning
alerts. Both cases showed that hail could be predicted in advance with a lead time of over 13 minutes. This indicates the
possibility for users to prepare for and respond to hail events.
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Figure 4: Hail Forecast visualization results
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Figure 5: Numerical evaluation results for nine hail cases

5 Conclusions

In this study, we proposed methods for evaluating and improving hail prediction techniques using SNS post data. We
conducted numerical evaluations on hail prediction methods aimed at reducing hail damage, focusing on 11 cases of hail and
sudden localized torrential rain. The results confirmed that the proposed method effectively predicts alerts in areas with high
concentrations of SNS post data, suppresses alerts in cases of torrential rain without hail, and ensures a lead time of more
than 13 minutes. These findings suggest that the method is effective for early detection of hail, indicating its potential use as
a tool for preventing hail damage and facilitating prompt response actions.
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